NORTH FORK WALLA WALLA RIVER
 RESTORATION DESIGN - RIVER MILE 4.3-5.2

ANY WORK WITHIN THE FLOWING CHANNEL OF THE NORTH FORK WALLA
WALLA RIVER MUST BE CONDUCTED BETWEEN JULY 1 AND SEPTEMBER 30


```
CONTRACTING AGENCY:
WALLA WALLA BASIN WATERSHED COUNCIL
ERIC HOVERSON, WATERSHEDRESTORATILNN SPECIALIST
810 S. MAINST.,MLTON-FREEWATER, OR 97862
ERC.HOVERS
FUNDING AGENCIES:
MEVILE POWER ADMINITRATION AND OREGON WATERSHED
ENHANCEMENT BOARD
PROPERTY OWNERS:
ENGINEER:
ENGINEER:
l
CRAMER \& ASSOCIATES, DBA CRAMER FISH SCIENCES
```


CONTRACTING AGENCY TO ACT AS CONTRACTING AGENCY'S REPRESENTATVE) ARE HEREIN REFERRED TO AS THE
"CONTAACTNG OFFCCR

3. Contractor shal ie responible for obtaling A contractors Expense all contruction permits

REQURED CONGTRGCTONMATERALSR SHOWN THERAWIGS AND DESCPIBEDN PROECT SPECIFICATIONS
5. REQUIRED CONSTRUCTION NATERIALS ARE SHOWN ON THE DRAWINGS AND DESCRIEED IN PROJJCCT SPECIIIC
6. INORMATION SHOWN ON THE DRAWINGS SUPERSEDES ANY CONTRAICTORY INFORMATIO IN THE PROJECT
6. INFORMATIN SHOV
drawings do not show al existing vegetatio
8. EXITTING TOPOGRRPHH, STRUCTURES, SITE EEAAURES AND PHASED WORK ARE SHOWN SCREENED AND/OR LIGHT-LINED.

10. ELEVATIONS AND DISTANCES SHOWN ARE IN FEET AND DECIMALS WITH CONTOUR INTERVALS AT 5 -FOOT INCREMENTS.
11. ELEVALTINS GIVEN ARE TO OINAL GRADE UNLESS OTHERWISE SHOWN. UNLESS OTHERWISE NOTED, DEPTHS OF FILL ARE
12. FINAL GRADING SHALL PROVIDE DRAINAGE AS SHOWN ON DRAWINGS,
 CONCC EXPRESSED IN ITTERNATIONAL FEET FOR USE ON THIS PROJECT LIDAR WAS COLLECTED WTHA RIEGL VQ-1560II

RESPECTIE SURVEYS.
 PROJECT AREA BY ECOSYSTEM SCIENCES, LLC IN NOVEMBER 2022 IN ACCORDANCE WITH USACE GUIDELINES ON
IDENTFICATON OF THE ORDINARY HIGH WATER MARK (OHWM AND IN CONUNCTION WITH AGENCY CONSUTATON
15. EXISTING CONDITIONS AA THE TIME OF CONSTRUCTION MAY VARY FROM THOSE SHOWN ON THE DRAWINSS. CONTRACTO
16. CONTRACTOR SHALL MANTAIN, RELOCATE OR REPLACE EXITING SURVEY MONUMENTS, CONTROL POINTS AND STAKES

17. CONTRACTOR SHALL BE RESPONSIBLL FOR ALL CONSTRUCTION STAKING AND LAYOUT.
 BETWEEN JULY 1 AND SEPTEMBER 30 .
19. CoNTTACTOR IS RESPONSIBLE FOR LOCATING ALL UTLITIES THAT MAY BE IMPACTED AND PROTECTING UTLITIES DURING

 SAFETY.
21. CONTRACTOR SHALL CONFIRM THE ACCESS POINT, ROUTESS, AND LOCATION OF STORAGE OF MATERALLS AND EQUPMEN
22. STORING OF ALL EQUIPMENT WILL be At THE Contractors risk And at a location approved by the contracting
23. WATER FOR FIRE PREVENTION AND SUPPRESSION AS WELL AS FOR USE WITH CONSTRUCTION ACTVVTIES SHALL BE
24. CONTRACTOR SHALL COORDINATE WTH CONTRACTING OFFICER TO ENSURE FISH SALVAGE WITHN THE PROJECT SITE HAS
BEEN ACCOMPLSHED PRIOR TO CONSTRUCTION ACTVITIES FISH SALLVAGE WILL EE THE RESPONSIBLITY OF THE BEEN ACCOMPLISHED PRIOR TO CONSTRUCTION ACTVITIES. FISH SALVAGE WILL BE THE RESPONSIBLLTY OF THE
CONTRACTNG AGENCY.
 OFFICER.
 P) AS SPECIFIED
27. ENGINER RESPONSILLE FOR THE PREPARATION OF THESE DRAWINGS AND SPECIFICATIONS WIL NOT BE RESPONSIBLE SPECIIICATIONS MUST EE IN WRII
DRAWINGS AND SPECIFICATIONS.
28. CONTRACTOR SHALL BE RESSPONSBLLE FOR ANY WORK NECESSARY TO MAINTANA A PASSABLE CONDITION ON THE NORTH
FORK WALLA WALLA RIVER ACCESS ROUTE TO ALL CONSTRUCTION VEHICLES AT THE TIME OF CONSTRUCTON AND 28. CONTRACTO
FoRK KALLA
PLANTING.

shto	American association of state highway and
	${ }_{\text {ACRE }}^{\text {TRASPORTATION OFFICIALS }}$
approx	APPROXIMATELY
AstM	AMERICAN SOCIETY FOR TESTING AND MATERIA
AWPA	American wood protection association
${ }_{\text {c }}$	CUBIC FEET
${ }_{\text {c }}^{\text {c/ }}$	CUBIC FEET PER SECOND
${ }_{\text {cp }}$	CENTERLINE CONTRLI POINT
${ }_{\mathrm{Cr}}$	CUBIC YARD
diA	diameter
DBH	DIAMETER RREAST HIGHT
EA	East, Easting
EA	
Ex, ExST	ExISTING
	ELLCCTRIC
ELL, ELEV	ELEEVATION
ExT	
FG	FINAL GRade
${ }_{\text {FT }}$	FEET
	habitat inprovement plan
Horiz	Horzontal ${ }_{\text {HoRIzontal point of intersection }}$
IE	invert elevation
inv	INVERT
	LINEAL FOOT
$\begin{aligned} & \text { LDAR } \\ & \hline \mathrm{LS} \end{aligned}$	Licht detection and ranging
	MaXIMUM
MiN	MINMUM
N	NORTH, NORTHING
NAA	NOTAPPLICABLE
navd	NORTH AMERICAN VERTICAL DATUM
NMFS	NATIONAL MARINE FISHERIES SERVVICE
No	
NTS	NOT TO SCALE
онwmorw	ORIINARY HIGH WATER MARK
${ }_{\text {OPUS }}$	ONLIN POSITITONING USER SERVICE
OSHA	Oflictiol
PaLs	POST-AsSIITED LOG STRUCTURES
P1	point of intersection
${ }_{\text {POE }}^{\text {POB }}$	POINT OF PEGINNING POINT OFENING
PVC	POLYVINYLCHLORIDE
PVI	POINT OF VERTICAL INTERSECTION
R	Radus, range
RM	RIVER MLE
SCH	SCHEDULE
SEC	
Sf	Souare foot
STA	station
SWPPP	storm water pollution prevention plan
	Township
TEMP	TEMPORARY
	underground
UoN	UNLESS OTHERWIISE NOTED
Uv	UNITTED STATES
	vertical point of intersection
VERT	VERTICAL
w/	
WL	WATER LINE, WETLAND
WSE	WATter Surface elevation
wwewc	WALLA WALLA AASIN WATERSHED Council
wo	without
"	INCH, INCHES OR SECOND
	FOOT, FE DEGREE

LEGEND:
large log jam
small log jam
apex Jam
floodplain pinned logs

floodplan pinned logs
Boulder
-
ACCESS Route
STAGING AND STOCKPILE AREA

LOW FLOW (EXISTING CONDITIONS wetlands
wiLow trenching
ORDINARY HIGH WATER
MODELED 100YR FLOW EXTENTS
(EXISTTING CONDITIONS)
anticipated river channel
temporary water crossing
temporary access path
Existing contour

temporary coffer dam

QUANTTTY SUMMARY			
MATERAL	SIZE	Root WAD	QUANTITY
TYPE	LENGTH X DIAM (FT) /ROCK SIZE	YES/NO	\#
SLASH (CY)	<10x<0.5	No	546
RACKING WOOD	$6-20 \times 0.5-1$	OPTIONAL	882
LOG TYPE B	25×2	YES	10
LOG TYPE C	30×2	Ves	10
LOG TPPE D	35×2	VES	32
106 TYPE E	40×2	Yes	120
106 TYPE F	25×2	No	5
106 TPPE 6	30×2	No	5
106 PILE	$20.25 \times 1.0-1.5$	No	250
Boulders	4 MAN	N/A	320
LVE CUTIING	N/A	N/A	2994
WLLow trenching (LF)	N/A	N/A	900
SIDE CHANNEL INLET EXCAVATION (CY)	N/A	N/A	391
$\begin{aligned} & \text { SIDE CHANNEL } \\ & \text { EXCAVATION } \\ & \text { (CY) } \end{aligned}$ (CY)	N/A	N/A	832
$\underset{\substack{\text { COARE EIDE CHANNEL } \\ \text { STREAMEED M } \\ \text { (CY) }}}{\text { IX }}$	Spec. 32.23 .23	N/A	550
$\underset{\substack{\text { SIDE CHANNE STAND LIFTS } \\ \text { (CY) }}}{\text { and }}$	SPEC: 32.23.23	N/A	75
$\begin{aligned} & \text { SIDE CHANNEL } \\ & \text { STREAMBED MIX } \\ & \text { (CY) } \end{aligned}$	Spec. 32.2 .23 .23	N/A	300
$\underset{\substack{\text { RESEEDNG/STIE } \\ \text { RESTORATON (ACRE) }}}{\text {. }}$	N/A	N/A	3.53

$\xrightarrow{2} \frac{2 \text { of } 22}{\text { PLOT TIME: 8:25:50 AM }}$

HIP GENERAL CONSERVATION MEASURES APPLICABLE TO ALL ACTIONS THE ACTVVITIES COVERED UNDER THE HIP ARE INTENDED TO PROTECT AND RESTORE FISH
AND WILDLIFE HABITAT WITH LONG-TERM BENEFITS TO ESA-LISTED SPECIES. THE

PROJECT DESIGN AND SITE PREPARATION.

1. STATE AND FEDERAL PERMITS
A. ALL APPLICABLE REGULATORY PERMITS AND OFFICIAL PROJECT AUTHORIZATIONS WILL
BE OBTAINED BEFORE PROJECT IMPLEMENTATION.
B. THESE PERMITS AND AUTHORIZATIONS INCLUDE, BUT ARE NOT LIMITED TO, NATIONAL APPROPRIATE STATE AGENCY REMOVAL AND FILL PERMIT, USACE CLEAN WATER ACT
(CWA) 404 PERMITS, CWA SECTION 401 WATER QUALITY CERTIFICATIONS, AND FEMA NO-RISE ANALYSES
2. TIMING OF IN-WATER WORK
A. APPROPRIATE STATE (OREGON DEPARTMENT OF FISH AND WILDLIFE (ODFW), WASHINGTON DEPARTMENT OF FISH AND WLLDLIFE (WDFW), IDAHO DEPARTMENT OF FISH
AND GAME (IDFG), AND MONTANA FISH WILDLIFE AND PARKS (MFWP)) GUIDELINES FOR AD GAME (IDEG), AND MONTANA FISH WILDLIFEAND PARLO (MFD
TIMING OF IN-WATER WORK WINDOWS (IWW) WILL BE FOLLOWED.
B. CHANGES TO ESTABLISHED WORK WINDOWS WILL BE APPROVED BY REGIONAL STATE
C. BULL TROUT. FOR AREAS WITH DESIGNATED IN-WATER WORK WINDOWS FOR BULL
TROUT OR AREAS KNOWN TO HAVE BULL TROUT, PROJECT PROPONENTS WILL CONTACT THE APPROPRATE USFWS FIELD OFFICE TO INSURE THAT ALL REASONABLE IME LEM MATATION MEASURES ARE CONSIOERED AND AA APPROPRIATE IN-WATER WORK
WILDOW IS BEING USED TO MIIMIZE PROJECT EFFECTS.
D. LAMPREY. WORIING IN STREAM OR RIVER CHANNELS THAT CONTAIN PACIIIC LAMPREY
WILL BE AVOIDED FROM MARCH 1 TO JULY 1 FOR REACHES C5,000 FEET INELEVATION AND FROM MARCH 1 TO AUGUST 1 FOR REACHES 55,000 FEETT. IF EITHER TIMEFRAME IS
INCOMPATBLE WITH OTHER OBUECTVES, THE AREA WILL BE SURVEYED FOR NESTS AND THE PROJECT SPONSOR WILL UTLIIZE DEWATERING AND SALVAGE PROCEDURES (SEE
E. THE IN-WATER WORK WINDOW WILL BE PROVIDED IN THE CONSTRUCTION PLANS. 3. CONTAMINANTS.
A. EXCAVATION OF MORE THAN 20 CUBIC YARDS WILL REQUIRE A SITE VIIIT AND DOCUMENTED ASSESSMENT FOR POTENTAL CONTAMINANT SOURCES. THE SITE
ASSESSMEN WIL BE STORED WITH PROJECT FILES OR AS AN APPENDIX TO THE BASIS
OFDESIGN REPORT F DESIGN REPORT.
B. THE SITE ASSESSMENT WILL SUMMARIZE:
3. THE SITE VIIIT, CONDITION OF THE PROPERTY, AND IDENTIFICATION OF ANY AREAS
USED FOR VARIOUS INDUSTRILL PROCESSES;
4. AVALLABLE RECORDS, SUCH AS FORMER SITE USE, BUILDING PLANS, AND RECORDS
OF FAY PRIOR CONTAMINATION EVENTS;
5. INTERVIEWS WITH KNOWLEDGEABLE PEOPLE, SUCH AS SITE OWNERS
OPERATORS, OCCUPANTS, NEIGHBORS, OR LOCAL GOVERNMENT OFFF

4. SITE LAYOUT AND FLAGGING.

A. CONSTRUCTION AREAS TO BE CLEARLY FLAGGED PRIOR TO CONSTRUCTION.

B AREAS TO BE FLAGGED WILLINCLUDE:

1. SENSITIVE RESOURCE AREAS, SUCH AS AREAS BELOW ORDINARY HIGH WATER,
2. EQUIPMENT ENTRY AND EXIT POINTS
3. ROAD AND STREAM CROSSING ALIGNMENTS;
4. StAging, storage, and stockpile areas; And
5. No-SPRAY AREAS AND buFFERS.

TEMPORARY ACCESS ROADS AND PATHS

A. EXISTING ACCESS ROADS AND PATHS WILL BE PREFERENTIALLY USED WHENEVER
REASONABLE, AND THE NUMBER AND LENGTH OF TEMPORARY ACCESS ROADS AND

B. VEHICLE USE AND HUMAN ACTIVITIES, INCLUDING WALKING, IN AREAS OCCUPIED BY
TERRESTRIAL ESA-LISTED SPECIES WILL BE MINIMIZED.
C. TEMPORARY ACCESS ROADS AND PATHS WILL NOT BE BULIT ON SLOPES WHERE
GRADE, SOIL, OR OTHER FEATURES SUGGEST A LIKELIHOOD OF EXCESSIVE EROS GRADE, SOLL, OR OTHER FEATURES SUGGEST A LIKELIHOOD OF EXCESSIVE EROSION
OR FAILURE. IF SLOPES ARE STEEPER THAN 30%, THEN THE ROAD WILL BE DESIGNED BY A CIVIL ENGINEER WITH EXPERIENCE IN STEEP ROAD DESIGN.
D. THE REMOVAL OF RIPARIAN VEGETATION DURING CONSTRUCTION OF TEMPORARY
ACCESS ROADS WILL BE MINIIIZED. WHEN TEMPORARY VEGETATION REMOVAL IS ACCESS ROADS WILL BE MIIIMIZED. WHEN TEMPORARY VEGETATION REM
REQURED, VEGETATION WILL BE CUT AT GROUND LEVEL (NOT GRUBBED).
E. AT PROJECT COMPLETION, ALL TEMPORARY ACCESS ROADS AND PATHS WILL BE OBLITERATION REFERS TO THE MOST COMPREHENSIVE DEGREE OF DECOMMISSIONING AND INVOLVES DECOMPACTING THE SURFACE AND DITCH, PULLING
THE FIL MATERIL ONTO THE RUNNING SURFACE, AND RESHAPING TO MATCH THE
ORIGINAL CONTOLR.
F. HELICOPTER FLIGHT PATTERNS WILL BE ESTABLISHED IN ADVANCE AND LOCATED TO
AVOID TERRESRAL SENSITIVE LIFE STAGES.
6. TEMPORARY STREAM CROSSINGS
A. EXISTTNG STREAM CROSSINGS OR BEDROCK WILL BE PREFERENTIALLY USED WHENEVER REASON
WILL BE MINIMIZED.
B. TEMPORARY BRIDGES AND CULVERTS WILL BE INSTALLED TO ALLOW FOR EQUIPMENT
 LOCATIONS IN CONTACT WITH OR DIRECTLY OVER WATER.
C. FOR PROJECTS THAT REQUIRE EQUIPMENT AND VEHICLES TO CROSS IN THE WET: 1. THE LOCATION AND NUMBER OF ALL WET CROSSINGS SHALL BE APPROVED BY THE
2. VEHICLES AND MACHINERY SHALL CROSS STREAMS AT RIGHT ANGLES TO THE MAIN CHANNEL WHENEVER POSSIBLE:
3. NO STREAM CROSSINGS WILL OCCUR 300 FEET UPSTREAM OR 100 FEET
DOWNSTREAM OF AN EXISTING REDD OR SEAWNING FISH: AND
4. AFTER PROJECT COMPLETION, TEMPORARY STREAM CROSSINGS WILL BE
staging storage anstocker
A. STAGING AREAS (USED FOR CONSTRUCTION EQUPMENT STORAGE, VEHICLE STORAGE,
FUELING, SERVICING, AND HAZARDOUS MATERIAL STORAGE) WILL BE 150 FEETOR MORE FROM ANY NATURAL WATER BODY OR WETLAND. STAGING AREASCLOSER THAN MORE FROM ANY NATURAL WATER BODV OR WETLAND. STAGING AREAS CLOSER
150 FEET WILL BE APPROVED BY THE ENVIRONMENTAL COMPLIANCE (EC) LEAD.
B. NATURAL MATERIALS USED FOR IMPLEMENTATION OF AQUATIC RESTORATION, SUCH AS LARGE WOOD, GRAVEL, AND BOULDERS, MAY BE STAGED WITHIN 150 FEET IF
CLEARLY INDICATED IN THE PLANS THAT AREA IS FOR NATURAL MATERALAL ONLY.
c. ANY LARGE WOOD, TOPSOIL, AND NATIVE CHANNEL MATERIAL DISPLACED BY
CONSTRUCTION WILL BE STOCKPILED FOR USE DURING SITE RESTORATION AT A CONSTRUCTION WILL BE STOCKPILED FOR USE
SPECIFICALY IDENTIFIED AND FLAGGED AREA.
D. ANY MATERIAL NOT USED IN RESTORATION, AND NOT NATIE TO THE FLOODPLAIN,
WILL BE DISPOSED OF OUTSIDE THE AOO-YEAR FLOODPLAIN. 8. EQUIPMENT
A. MECHANIZED EQUIPMENT AND VEHICLES WILL BE SELECTED, OPERATED, AND (E.G., MINMALY-SIZED LOW PRESSURETIRES. MIEHAL HARD-TURNPATHS FOR (E.G., MINIMALLY-SIZED, LOW PRESSURE TIRES; MINIMAL HARD-TURN PATHS FOR
TRACKDVEHCES: TEMPORARY MATS OR PLATES WITHIN WET AREAS OR ON
SENSITVE SOISS SENSITIVE SOILSS).
B. EQUPMENT WILL BE STORED, FUELED, AND MAINTAINED IN AN CLEARLY IDENTIFIED
STAGING AREA THAT MEETS STAGING AREA CONSERVATION MEASURES.
C. EQUIPMENT WILL BE REFUELED IN A VEHICLE STAGING AREA OR IN AN ISOLATED HARD ZONE, SUCH AS A A AVED PARKING LOT OR ADJACENT, ESTABLISHED ROAD (THIS
MEASUR APPLIES ONLY TO GAS-POWERED EQUIPMENT WITH TANKS LARGER THAN 5 GALLONS).
D. BIodegradable Lubricants and fluids wil be used on equipment operating in AND ADJACENT TO THE STREAM CHANNELAND LIVE WATER.
E. EQUIPMENT WILL BE INSPECTED DALY FOR FLLID LEAKS BEFORE LEAVING THE
VEHICLE STAGING AREA FOR OPERATION WITHIN 150 FEET OF ANY NATURAL WATER VEHCLE STAGING A
BODY OR WETLAND
F. EQUIPMENT WILL BE THOROUGHLY CLEANED BEFORE OPERATIN BELOW ORDINARY
HGH WATER, AND AS OFTEN AS NECESSARY DURING OPERATION, TO REMAIN GREASE FREE.

9. EROSION CONTROL

A. TEMPORARY EROSION CONTROL MEASURES INCLUDE:

1. TEMPORARY EROSION CONTROLS WILL BE IN PLACE BEFORE ANY SIGNIFICANT
ALTERATION OF THE ACTION SITE AND APPROPRIATELY INSTALLED DOWNSLOPE
 REHABLLTATION IS COMPLETE
2. IF THERE IS A POTENTIAL FOR ERODED SEDIMENT TO ENTER THE STREAM,
SEDIMENT BARRIERS WILL BE INSTALLED AND MAINTAINED FOR THE DURATION SEDIMENT BARRIERS WILL BE
PROJECT IMPLEMENTATIN:
3. TEMPORARY EROSION CONTROL MEASURES MAY INCLUDE SEDGE MATS, FIBER GEOTEXTLEES AND GEOSYNTHETIC FABRIC;
4. SOIL STABILIZATION UTLIIZING WOOD FIBER MULCH AND TACKIFIER (HYDRO-APPLLED) MAY YE USED TO REDCE EROSION OF BARE SORILII THE
MATERILLS ARE NOXIOUS WED FREE AND NONTOXIC TO AQUATIC AND MATERIALS ARE NOXIOUS WEED FREE AND NONTOXIC TO AQUATIC AI
TERRESTRIAL ANIMALS, SOIL MICROORGANISMS, AND VEGETATION;
5. SEDIMENT WILL BE REMOVED FROM EROSION CONTROLS ONCE IT HAS REACHED
6. ONCE THE SITE IS STABILIZED AFTER CONSTRUCTION, TEMPORARY EROSION
CONTROL MEASURES WILL BE REMOVED.
B. EMERGENCY EROSION CONTROLS. THE FOLLOWING MATERIALS FOR EMERGENCY
EROSION CONTROL WILL BE AVALLABLE AT THE WORK SITE:
7. Asuplyof
8. A SUPPLY OF SEDIMENT CONTROL MATERIALS; AND
9. AN OIL-ABSORBING FLOATING BOOM WHENEVER SURFACE WATER IS PRESENT.
10. DUST ABATEMENT.
A. THE PROJECT SPONSOR WILL DETERMINE THE APRRORRIATE DUST CONTROL
MEASURES BY CONSIDRRING SOIL TYPE, EQUIPMENT USAGE. PREVAIING WII DRECTION, AND THE EFFECTS CAUSED BY OTHER EROSION AND SEDIMENT CONTROL
MEASURES.
B. WORK WILL BE SEQUENCED AND SCHEDULED TO REDUCE EXPOSED BARE SOIL
C. DUST-ABATEMENT ADDITIVES AND STABILIZATION CHEMICALS (TYPICALLY MAGNESIUM CHLORIDE, CALCIUM CHLORIDE SALTS, OR LIGNNNSULFONATE) WILL NOT BE APPLIIED WITHIN 25 FEET OF WATER OR A STREAM CHANNEL AND WILL BE APPLIED SO AS TO
MINIIZE THE LIKELHOOD THAT THEY WILL ENTER STREAMS. APPLICATIONS OF

D. APPLICATION OF DUST ABATEMENT CHEMICALS WILL BE AVOIDED DURING OR JUST
BEFORE WET WEATHER, AND AT STREAM CROSSINGS OR OTHER AREAS THAT COULD BEFORE WET WEATHER, AND AT STREAM CROSSINGS OR OTHER AREAS THAT WATERBODY (TYPICALLY THESE WOULD BE AREAS WITHIN 25 FEET OF A WATERBODY
OR STREAM CHANNEL; DISTANCES MAY BE GREATER WHERE VEGETATION IS SPARSE OR STREAM CHANNEL; DIS
OR SLOPES ARE STEEP).
E. SPILL CONTAINMENT EQUIPMENT WILL Be AVALLAbLE dURING APPLICATION OF DUST
F. petroleum-based products will not be used for dust abatement.

PROJECT DESIGN AND SITE PREPARATION (CONTINUED)

11. SPILL PREVENTION, CONTROL, AND COUNTER MEASURES,
A. A DESCRIPTION OF HAZARDOUS MATERIALS THAT WILL BE USED INCLUDING
INVENTORYY STORAGE AND HANDLNG PROCEDURES WILL BE AVAILABLE ON-SITE
B. WRITTEN PROCEDURES FOR NOTIFYING ENVIRONMENTAL RESPONSE AGENCIES
WILL BE POSTED AT THE WORK SITE.
C. SPILL CONTAINMENT KITS (INCLUDING INSTRUCTIONS FOR CLEANUP AND USED AT THE SITE WILL BE AVALLABLE AT THE WORK SITE.
D. WOREERS WIL BE TRAINED IN SPILL CONTAINMENT PROCEDURES AND WILL BE
INFORMED OF THE LOCATION OF SLILL CONTAINMENT KITS.
E. ANY WASTE LIQUIDS GENERATED AT THE STAGING AREAS WILL BE TEMPORARIL
STORED UNDRR AN IMPERVVIOUS COVER SUCH AS ARAAPAUN STORED UNDER AN IMPERVIOUS COVER, SUCH AS A TARPAULIN, UNTIL THEY CA
BE PROPERLY TRANSPORTED TO AND DISPOSED OF AT A FACILTY THAT IS BE PROPERLY TRANSPORTED TO AND DISPOSED OF A
F. PUMPS USED ADJACENT TO WATER SHALL USE SPILL CONTAINMENT SYSTEMS, 12. INVASIVE SPECIES CONTROL
A. PRIOR TO ENTERING THE SITE, ALL VEHICLES AND EQUIPMENT WILL BE POWER
WASHED, ALLOWED TO FULLY DRY, AND INSPECTED TO MAKE SURE NO PLANTS, SOIL, OR OTHER ORGANIC MATERIAL ADHERES TO THE SURFACE.
B. WATERCRAFT, WADERS, BOOTS, AND ANY OTHER GEAR TO BE USED IN OR NEAR
WATER WILL BE INSPECTED FOR AQUATIC INVASIVE SPECIES.
c. WADING BOOTS WITH FELT SOLES ARE NOT TO BE USED DUE TO THEIR PROPENSITY FOR AIDING IN THE TRANSFER OF INVASIVE SPECIES UNLESS
DECONTAMINATION PROCEDURES HAVE BEEN APPROVED BY THE EC LEAD.

WORK AREA ISOLATION AND FISH SALVAGE.

1. WORK AREA ISOLATION.

A. ANY WORK AREA WITHIN THE WETTED CHANNEL WILL BE ISOLATED FROM THE
ACTIVE STREAM WHENEVER ESA-LISTED FISH ARE REASONABIY CERTAN TO PRESENT, ORIF THE WORK AREA IS LESS THAN 300-FEET UPSTREAM FROM KNOWN
B. WORK AREA ISOLATION AND FISH SALVAGE ACTVITIES WILL COMPLY WITH THE B. IN-WATER WORK WINDOW
C. DESIGN PLANS WILL INCLUDE ALL ISOLATION ELEMENTS AND AREAS (COFFER
DAMS, PUMPS, DISCHARGE AREAS, FISH SCREENS, FISH RELEASE AREAS, ETC.).
D. WORK AREA ISOLATION AND FISH CAPTURE ACTVITIES WILL OCCUR DURING
PERIODS OF THE COOLEST AIR AND WATER TEMPERATURES POSSIBLE, NORMALII EARLY Y T TE MORNING VERSUS LATE IN THE DAY, AND DURING CONDTIONS
2. FISH SALVAGE.
A. MONTORING AND RECORDING WIL TAKE PLACE FOR DURATION OF SALVAGE. THE
SALVAGE REPORT WILL BE COMMUNICATED TO AGENCIES VIA THE PROJECT SALVAGE REPORT WILL BE
COMPLETION FORM (PCF).
B. SALVAGE ACTIIITIES SHOULD TAKE PLACE DURING CONDITIONS TO MINIMIZE STRESS TO FISH SPECIES, TYPICALLY PERIODS OF THE COOLEST AR AND WATE
TEMPERATURES WHICH OCCUR IN THE MORNING VERSUS LATE IN THE DAY.
C. SALVAGE OPERATIONS WILL FOLLOW THE ORDERING, METHODS, AND

1. SLOWLY REDUCE WATER FROM THE WORK AREA TO ALLOW SOME FISH TO
LEAVE VOLTIONALLY.
2. BLOCK NETS WILL BE INSTALLED AT UPSTREAM AND DOWNSTREAM LOCATIONS AND MAINAINEDN A SECURED POSITION TO EXCLUDE FISH FROM ENTERING
3. BLOCK NETS WILL BE SECURED TO THE STREAM CHANNEL BED AND BANKS
UNTILFISH CAPTURE AND TRANSPORT ACTVITIES ARE COMPLETE. BLOCK NETS MAY BE LEFT IN PLACE FOR THE DURATION OF THE PROJECT
EXCLUDE FISH AS LONG AS PASSAGE REQUIREMENTS ARE MET.
4. NETS WILL BE MONITORED HOURLY DURING IN-STREAM DISTURBANCE.
5. IF BLOCK NETS REMAIN IN PLACE MORE THAN ONE DAY, THE NETS WILL BE
MONITORED AT LEAST DAILY TO ENSURE THEY ARE SECURED AND FREE OF MONITRED AT LEAST DALLY TO ENSURE THEY ARE SECURED AND FREE OF CHECKED EVERY 4 HOURS FOR FISH IMPINGEMENT.
6. CAPTURE FISH THROUGH SEINING AND RELOCATE TO STREAMS
7. WHLLE DEWATERING, ANY REMAINING FISH WILL BE COLLECTED BY HAND OR
DIP NETS.
8. SEINES WITH A MESH SIZE TO ENSURE CAPTURE OF THE RESIDING ESA-LISTED FISH WILL BE USED.
9. MINNOW TRAPS WILL BE LEFT IN PLACE OVERNIGHT AND USED IN
CONJUNCTION WITH SEINING.
10. ELECTROFISH TO CAPTURE AND RELOCATED FISH NOT CAUGHT DURING
11. CONtinue to slowly dewater stream reach
12. COLLECT ANY REMAINING FISH IN COLD-WATER BUCKETS AND RELOCATED TO
THE STREAM.
13. LIMIT THE TIME FISH ARE IN A TRANSPORT BUCKET.
14. MINIMIZE PREDATION BY TRANSPORTING COMPARABLE SIZES IN BUCKETS.
15. bucket water to be changed every 15 minutes or aerated.
16. BUCKETS WILL BE KEPT IN SHADED AREAS OR COVERED.
17. DEAD FISH WILL NOT BE STORED IN TRANSPORT BUCKETS, BUT WILL BE LEFT ONTESTREAM BANKTOAVID MORTALIH COUNING ERRORS.
D. SALVAGE GUIDELINES FOR BULL TROUT, LAMPREY, MUSSELS, AND NATIVE FISH. 1. Conduct site survey to estimate salvage numbers.
18. PRE-SELECT SITE(S) FOR RELEASE AND/OR MUSSEL bED RELOCATION.
19. SALVAGE OR BULL TROUT WILL NOT TAKE PLACE WHEN WATER
20. IF DRAWDOWN LESS THAN 48 HOURS, SALVAGE OF LAMPREY AND MUSSELS MAY NOT BE NECESSARY IF TEMPERATURES SUPPORT SURVIVAL IN
SEDIMENTS.
21. SALVAGe mussels by hand, Locating by snorkeling or wading.
22. SALVAGE LAMPREY BY ELECTROFISHING (SEE ELECTROFISHING FOR LARVAL
23. SALVAGE BONY FISH AFTER LAMPREY WITH NETS OR ELECTROFISHING (SEE
24. REGULARLY INSPECT DEWATERED SITE SINCE LAMPREY LIKELY TO EMERGE
25. MUSSELS MAY be transferred in coolers
26. MUSSELS WILL BE PLACED INDIVIDUALLY TO ENSURE ABILITY TO BURROW into
NEW HABITAT. 3. ELECTROFISHING.
A. INITAL SITE SURVEY AND InitiAl settings.
27. IDENTIFY SPAWNING ADULTS AND ACTIVE REDDS TO AVOID
28. RECORD WATER TEMPERATURE. ELECTROFISHING WILL NOT OCCUR WHEN
29. IF POSSIBLE, A BLOCK NET WILL BE PLACED DOWNSTREAM AND CHECKED
30. INITAL SETTINGS WILL BE 100 V VLTS, PULSE WIDTH OF 500 MICRO SECONDS,
AND PULSERATE OF 30 HERTZ
31. RECORDS FOR CONDUCTIVITY, WATER TEMPERATURE, AIR TEMPERATURE, ELECTROFISHING SETTINGS, ELECTROFISHER MODEL, ELECTROFISHER
CALIBRATION, FISH CONDITIONS, FISH MORTALTIES, AND TOTAL CAPTURE CALIBRATION, FISH CONDITIONS, FISH MORTALITIES, AN
RATES WILL EE INCLUDED IN THE SALVAGE LOG BOOK.
B. ELECTROFISHING TECHNIQUE

SAMPLING SHOULD BEGIN USING STRAIGHT DC. POWER WILL REMAIN ON UNTIL THE FISH S SETTE WHEN USING STRAIGHTDC. ORAD
VOLTAGE WHILE REMAINING BELOW MAXIMUM LEVELS.
2. MAXIMUM VOLTAGE WILL BE 1100 VOLTS WHEN CONDUCTIVITY IS <100 MILLISECONDS, 800 VOLTTS WHEN CONDUCTIVITY IS BETWEEN 100 AND 300
MLILISECONDS, AND 400 VOLTS WHEN CONDUCTVITY IS $\quad 300$ MILLISECONDS
3. IF FISH CAPTURE IS NOT SUCCESSFUL USING STRAIGHT DC, THE
ELECTROFISHER WILL BE SET TO INTIAL VOLTAGE FOR PDC. VOL WIDTH, AND PULES EREQUENCY WILL BE GRADUA
MAXIMUM VALUES UNTLL CAPTURE IS SUCCESSFUU.
4. MAXIMUM PULSE WIDTH IS 5 MILLISECONDS. MAXIMUM PULSE RATE IS 70 HERTZ
5. ELECTROFISHING WILL NOT OCCUR IN ONE AREA FOR AN EXTENDED PERIOD.
6. THE ANODE WILL NOT INTENTIONALLY COME INTO CONTACT WITH FISH. THE
7. SETTINGS WILL BE LOWERED IN SHALLOWER WATER SINCE VOLTAGE
8. ELECTROFISHING WILL NOT OCCUR IN TURBID WATER WHERE VISIBLITY IS
9. OPERATIONS WILL IMMEDATELY STOP IF MORTALITY OR OBVIOUS FISH INJURY
IS OBSERVED. ELECTROFISHING SETTINGS WILL BE REEVALUATED. c. SAMPLE PROCESSING

1. FISH SHALL BE SORTED BY SIZE TO AVOID PREDATION DURING CONTAINMENT.
2. SAMPLERS WILL REGULARLY CHECK CONDITIONS OF FISH HOLDING
3. FISH WILL Be observed for general conditions and inuuries
4. EACH FISH WILL BE COMPLETEL Y REVIVED BEFORE RELEASE. ESA-LISTED
SPECIES WILL BE PRIORITIZED FOR SUCCESSFUL RELEASE.
D. BULL TROUT ELECTROFISHING

- ELECTROFISHING FOR BULL TROUT WILL ONLY OCCUR FROM MAY 1 TO JULY 31 NOELECTROFISHING WILL OCCUR IN ANY BULL TROUT OCCUPIED HABITAT

2. ELECTROFISHING OF BULL TROUT WILL NOT OCCUR WHEN WATER TEMPERATURES EXCEED 15 DEGREES CELSIUS
E. LARVAL LAMPREY ELECTROFISHING,

PERMISSION FROM EC LEAD WILL BE OBTAINED IF LARVAL LAMPREY ELLCTTROFISHER IS NOT ONE OL FOLLOWING PRE-APPROVED MODEL
"WISCONIN", SMITH-ROOT LR-24, OR SMITH-ROOTAPEX BACKPACK.
2. LARVAL LAMPREY SAMPLING WILL INCORPORATE 2 -STAGE METHOD: "TICKLE" AND "STUN"
3. FIRST STAGE: USE 125 VOLT DC WITH A 25 PERCENT DUTY CYCLE APPLIED AT
SLOW RATE OF 3 PULSES PER SECOND. IF TEMPERATURES ARE BELOW 10
 EXCEED 200 VOLTS). BURSTED PULSES (THREE SLOW AND ONE SKIPPED)
4. SECOND STAGE (OPTIONAL FOR EXPERIENCED NETTERS): IMMEDATELY AFTER
5. USE DIP NETS FOR VIIIBLE LAMPREY. SIENES AND FINE MESH NET SWEEPS
MAY BE USED IN POOR VIIBILIITY.
6. SAMPLING WIL OCCUR SLOWLY ((60 SECONDS PER METER) STARTING AT
UPSTREAM AND WORKING DOWNSTREAM.
7. MULTIPLE SWEEPS TO OCCUR WITH 15 MINUTES BETWEEN SWEEPS,
8. POST-DRAWDOWN "DRY-SHOCKING" WILL BE APPLIED IF LARVAL LAMPREY
CONTINE TO EMERGE. ANODES TO BE PLACED ONE METER APART TO SAMPLE ONE SQUARE METER ATATIME FOR AT LEAST 60 SECONDS. FOR TEMPERATURES LRSS THAN 10 DEGREES CELSIUS, MAXIMUM VOLTAGE MAY BE TEMPERATURES LESS THAN 10 DEGREES CELSIUS, MAXIMUM V
GRADUALLY INCREASED TO 400 VOLTS (DRY-SHOCKING ONLY).

WORK AREA ISOLATION AND FISH SALVAGE (CONTINUED).

4. DEWATERING.
A. DEWATERING WILL OCCUR AT A RATE SLOW ENOUGH TO ALLOW SPECIES TO
NATURALLY MIGRATE OUT OF THE WORK AREA.
B. WHERE A GRAVITY FEED DIVERSION IS NOT POSSIBLEE A A PUMP MAY BE USED.
PUMPS WILL BE INSTALLED TO AVOID REPETITVE DEWATERING AND REWATERING.
C. WHEN FISH ARE PRESENT, PUMPS WILL BE SCREENED IN ACCORDANCE WITH NMFS
FISH SCREEN CRITERIA. NMFS ENGINEERING REVIEW AND APPROVAL WILL BE OBTAINED FOR PUMPS EXCEEDING 3 CUBIC FEET PER SECOND.
D. DISSIPATION OF FLOW ENERGY AT THE BYPASS OUTTLOW WILL BE PROVIDED TO
PREVENT DAMAG TO THE STREAM CHANNEL AND RIPARIAN LEGETATION .
E. SEEPAGE WATER WILL BE PUMPED TO A TEMPORARY STORAGE AND TREATMEN
SITE OF INTO UPLAND AREAS TO ALLOW WATER TO PERCOLATE THROUGH SOIL SITE OF INTO UPLAND AREAS TO ALLOW WATER TO PERCOLATE TH.
AND VEGETATION PRIOR TO REENTERING THE STREAM CHANNEL.
CONSTRUCTION AND POST CONSTRUCTION CONSERVATION MEASURES. 1. FISH PASSAGE.
A. FISH PASSAGE WILL BE PROVIDED FOR ADULT AND JUVENLLE FISH LIKELY TO BE
PRESENT DURING CONSTRUCTION UNLESS PASSAGE DID NOT EXIST BEFORE CONSTRUCTION, THE STREAM IS NATURAL Y IMPASSABLE OR PASSAGE WIL CONSTRUCTION, THE STREAM IS NATURALLY IMPASSABLE, OR
NEGATIVELY IMPACT ESA-LISTED SPECIES OR THEIR HABITAT.
B. FISH PASSAGE ALTERNATVES WILL BE APPROVED BY THE BPA EC LEAD UNDER
ADVISEMENT BY THE NMFS HABITAT BIOLOGIST.
5. CONSTRUCTION AND DISCHARGE WATER.
A. SURFACE WATER MAY BE DIVERTED TO MEET CONSTRUCTION NEEDS ONLY I
DEVELOPED SOURCES ARE UNAVALABLE OR INADEQUATE.

B Diversonsun C. CONSTRUCTION DISCHARGE WATER WILL BE COLLECTED AND TREATE TO
REMOVE CEBRIS NUTRIENTS,
AND OTHER POLLUTANTS.
3. TIME AND EXTENT OF DISTURBANCE.
A. EARTHWORK REQURING IN-STREAM MECHANIZED EQUIPMENT (INCLUDING
DRILING, EXCAVATION DREDGING FILLING, AND COMPACTING) WILL BE DRILLING, EXCAVATION, DREDGING, FILL
COMPLETED AS QUICKLY AS POSSIBLE.
B. MECHANIZED EQUIPMENT WILL WORK FROM TOP OF BANK UNLESS WORK FROM ANGEETATION IISTURBANCE, ETC.).
4. CESSATION OF WORK.
A. PROJECT OPERATIONS WILL CEASE WHEN HIGH FLOW CONDITIONS MAY RESULT IN
INUNDATION OF THE PROJECT AREA FLOOD EFFORTS TO DECREASE DAMAGES TO NATURAL RESOURCES PERMITTED).
B. WATER QUALITY LEVELS EXCEEDED. SEE CWA SECTION 401 WATER QUALITY
5. SITE RESTORATION.
A. DISTURBED AREAS, STREAM BANKS, SOILS, AND VEGETATION WILL BE CLEANED UP
AND RESTORED TO IMPROVED OR PRE-PROJECT CONDTIONS.
B. PROJECT-RELATED WASTE WILL BE REMOVED
C. TEMPORARY ACCESS ROADS AND STAGING WILL BE DECOMPACTED AND RESTORED. SOILS WILL BE LOOSENED IF NEEDED FOR REVEGETATION OR WATER
INFILTRATION.
D. THE PROJECT SPONSOR WILL RETAIN THE RIGHT OF REASONABLE ACCESS TO THE
SITE TO MONITOR AND MAINAIN THE SITE OVER THE LIFE OF THE PROJECT.

6. REVEGETATION.

A. PLANTING AND SEEDING WILL OCCUR PRIOR TO OR AT THE BEGINNING OF THE
FIRST GROWING SEASON AFTER CONSTRUCTION.

A MIX OF NATIVE SPECIES (INVASIVE SPECIES NOT ALLOWED APPROPRIATE TO THE SITE WILL EB USEDEDT REESTABLIIHH VEGETAAION, PROVVDD SHADE, AND PRE-PROJECT CONDITIONS WITHIN THREE YEARS.
C. VEGETATION SUCH AS WILLOWS, SEDGES, OR RUSH MATS WILL BE SALVAGED
FROM DISTURBED OR ABANDONED AREAS TO BE REPLANTED SHort-TERM STABIIIZATION MEASURE MAY INCLUDE THE USE OF NON-NATTVE
STERLL SEED MX WHEN NTIVE NOT AVALLABLE), WEED-FREE CERTIFIED STRAW, STERILE SEED MIX (WHEN NATVE
OR OTHER SIMLAR TECHNIQUES.
E. SURFACE FERTLIZER WILL NOT BE APPLIED WITHIN 50 FEET OF ANY STREAM, WATE
BODY, OR WETLAND.
. fencing will be installed as necessary to prevent access to
REVEGETATED SITES BY LIVESTOCK OR UNAUTHORIZED PERSONS.
G. INVASIVE PLANTS WILL BE REMOVED OR CONTROLLED UNTLL NATIVE PLANT SPECIIS ARE WELLESTABLISHED (TYPICALLY THREE YEARS
POST-CONSTRUCTION).
7. SITE ACCESS AND IMPLEMENTATION MONITORING.
A. THE PROJECT SPONSOR WILL PROVIDE CONSTRUCTION MONITORING DURING IMP LLEMENTATTON NO ENSURE ALL CONSERVATION MEASUR RS ARE A DEQUUTELY
FOLLOWED, EFFECTS TO LISTED SPECIES ARE NOT GREATER THAN PREDICTED, AND INCIDENTAL TAKE LIMITATIONS ARE NOT EXCEEDED.
B. THE PROJECT SPONSOR OR DESIGNATED REPRESENTATIVE WILL SUBMIT THE

CWA SECTION 401 WATER QUALITY CERTIFICATION.
A. THE PROJECT SPONSOR OR DESIGNATED REPRESENTATIVE WILL COMPLETE AND
RECORD WATER QUALITY OBSERVATIONS (SEE TURBIDTY MONITORING) TO ENSURE IN-WATER WORK IS NOT DEGRADING WATER QUALITY.
B. DURING CONSTRUCTION, WATER QUALITY PROVIIIONS PROVIDED BY THE OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY, WASHINGTON DEPARTMENT OF
ECOLOGY, IDAHO DEPARTMENT OF ENVIRONMENTAL QUALITY WILL BE FOLLOWED. STAGED REWATERING PLAN.
A. WHEN REINTRODUCING WATER TO DEWATERED AREAS AND NEWLY CONSTRUCTED
CHANELS, A STAGED REWATERING PLAN WILL BE APPLIED. NELSS, A STAGED REV
B. THE FOLLOWING WILL BE APPLIED TO ALL REWATERING EFFORTS. COMPLEX
REWATERING EFFORTS MAY REQUIRE ADDITIONAL NOTES OR ADEDICATED SHEE REWATERING EFFORTS MAY REQ
IN THE CONSTRUCTION DETALLS

1. TURBIITY MONITORING PROTOCOL WILL BE APPLIED TO REWATERING
EFFORTS.
2. PRE-WASH THE AREA BEFORE REWATERING. TURBID WASH WATER WILL BE DETAINED AND PUMPED TO THE FLOODPLAIN OR SEDIMEN
RATHER THAN DISCHARGING TO FISH-EEARING STREAMS.
3. INSTALL SEINE NETS AT UPSTREAM END TO PREVEN FISH FROM MOVING
DOWNSTREAM UNTIL $2 / 3$ OF TOTAL FLOW IS RESTORED TO THE CHANNEL.
4. STARTING IN EARLY MORNING INTRODUCE $1 / 3$ OF NEW CHANNEL FLOW OVER PERIOD OF 1-2 HOURS
5. INTRODUCE SECOND THIRD OF FLOW OVER NEXT 1 TO 2 HOURS AND BEGIN
FISH SALVAGE OF BYPASS CHANNEL IF FISH ARE PRESENT.
6. REMOVE UPSTREAM SEINE NETS ONCE 2/3 FLOW IN REWATERED CHANNEL AND
DOWNSTREAM TURBIITY IS WITHN ACCEPTABLE RANGE (LESS THAN 40 NTU DOWNSTREAM TURBDDITY IS WITHIN
OR LESS THAN 10% BACKGROUND)
7. INTRODUCE FINAL THIRD OF F FOW ONCE FISH SALVAGE EFFORTS ARE COMPLETE AND DOWN
ACCEPTABLE RANGE.
8. INSTALL PLUG TO BLOCK FLOW INTO OLD CHANNEL OR BYPASS. REMOVE ANY
9. IN LAMPREY SYSTEMS, LAMPREY SALVAGE AND DRY SHOCKING MAY BE

TURBIDITY MONITORIN

A. RECORD THE READING, LOCATION, AND TIME FOR THE BACKGROUND READING APPROXIMATELY 100 FEET UPSTREAM OF THE PROJECT AREA USING ARECENTLY
CALIBRATED TURBIDIMETER OR VIA VISUAL OBSERVATION (SEE THE HIP HANDBOO TURBIDITY MONITORING SECTION FOR A VISUAL OBSERVATION KEY)
B. RECORD THE TURBIITIT READING, LOCATION, AND TIME AT THE MEASUREMENT
COMPLIANCE LOCATION PDINT.

1. 50 FEET DOWNSTREAM FOR STREAMS LESS THAN 30 FEET WIDE.
2. 100 FEET DOWNSTREAM FOR STREAMS BETWEEN 30 AND 100 FEET WIDE
3. 200 FEET DOWNSTREAM FOR STREAMS GREATER THAN 100 FEET WIDE
4. 300 FEET FROM THE DISCHARGE POINT OR NONPOINT SOURCE FOR
LOCATIONS SUBJECT TO TIDAL OR COASTAL SCOUR.
C. TURBIDTY SHALL BE MEASURED (BACKGROUND LOCATION AND COMPLIANCE
POINTS) EVERY 4 HOURS WHILE WORK IS BEING IMPLEMENTED.
D.
D. IF THERE IS A VIIBLE DIFFERENCE BETWEEN A COMPLIANCE POINT AND THE
BACKGROUND, THE EXCEEDANCE WILL BE NOTED IN THE PROJECT COMPLETIO FORM (PCF). ADJUSTMENTS OR CORRECTVE MEASURES WILL BE TAKEN IN ORDER
TO REDUCE TURBIDTY
E. IF EXCEEDANCES OCCUR FOR MORE THAN TWO CONSECUTVE MONITORING IF EXCEEDANCES OCCUR FOR MORE THAN TWO CONSECUTVE MONITORING
INTERVALS (AFTER B HOURS), THE ACTVITY WILL STOP UNTIL THE TURBIITY LEVEL RETURNS TO BACKGROUND. THE BPA EC LEAD WILL BE NOTIFIED OF ALL
EXCEEDANCES AND CORRECTIVE ACTIONS AT PROJECT COMPLETION.
F. IF TURBIDITY CONTROLS (COFFER DAMS, WADDLES, FENCING, ETC.) ARE DETERMINED INEFFECTIVE CREWS WILL BE MOBIIIEDEDTOMODTIFY ARE A NCESSARY
OCCURRENCES WILL BE DOCUMENTED IN THE PROJECT COMPLETION FORM (PCF).
G. FINAL TURBIDITY READINGS, EXCEEDANCES, AND CONTROL FALURES WILL BE
SUBMITTED TO THE BPA EC LEAD USING THE PROJECT COMPLETION FORM (PCF)

$\stackrel{5}{5 \text { of } 22} \infty$

(1) $\frac{\text { PROFILE }}{\text { ALGGMENTD }}$

CONSTRUCTION NOTES:

1. SEE DETALL A ON THIS SHEET FOR TYPICAL SECTION PERTAINING
TO INLET GRADING FOR ALIGNMENT O GRAING ACTVIITIES.
2. Native materil from all side channel excavation

 Dispersed
wWBWC.

(A) TYPICAL INLET GRADING CROSS SECTION
C.09, C-10 $A L$ ALGMMENTS A, B, C, AND D

(B) TYPICAL COARSE STREAMBED CROSS SECTION

(C) TYPICAL STREAMBED CROSS SECTION
3. THESE SECTIONS ARE REPRESENTATVE OF GRADING FOR BOTTOM MIDTHANS SID
ELEVATIONS.
SEE SPECIFICATION SECTION FOR COARSE STREAMBED MIX GRADATIO
4. SEE SPECIFLCATION SECTION FOR STREAMBED MIX GRADATION

SAND LIFT WITH VAREES FROM 1 "-4 4 AS AEEDED TO SEAL CHANNEL BED
WASH SAND INTO VOID SPACE UNTLL SEALED AND BED HODS WATER.

SECTION VIEW
(1) SMALL LOG JAM

TYPICAL DETALLS

small log jam				
NUMBER OF STRUCTURES: 4				
material	SIIE	ROOT WAD	QUANTITY PER STRUCTUR	Total
TYPE	Length xiam/ Rock SIIE DIAM	YEs/No	$\mathrm{EA} / \mathrm{Cr}$	EA/Cr
LOG TYPEE (EA)	40×1.75	Yes	3	12
$\underset{\text { (EA) }}{\substack{\text { RACKING } \\ \text { WOOD }}}$	${ }^{6-10 \times 0.066-0.83}$	optional	15	60
SLASH (CY)	<10x<0.5	No	8	32
$\underset{\substack{\text { (EA) }}}{\text { HABTIT BOULDER }}$	$36^{\prime \prime}$ - 48 "	N/A	6	24
Live cuting (EA)	N/A	N/A	5	20

(1) SMALL LOG JAM SCHEDULE

TYPICAL DETALLS

NOTES:

1. CONTRACTOR TO CONSTRUCT WOOD STRUCTURES AS DESCRIBED IN DRAWINGS AND SPECIIICATIONS.
CONTRACTING OFFICRR WILL PROVIIE FIELI GUIDANCE AND APPROVAL OF INSTALLED STRUCTURES.

CONTRACTING OFFICER WILL PROVIDE FIELD GUIDANCE AND APPROVAL OF ISSTALLED STRUCTURES.
3. ALL LOGS TTYE E WILL HAVE ROOTWADS AND WILL BE LOCALLY AVALLABLE CONFER SPECIES (E.G. PINU
4. INTERMEDATE AXIS OF HABITAT BOULDERS SHALL BE 36 -48" ON AVERAGE

(1) LARGE LOG JAM - TYPE 1 (VERTICAL PILES) TYPICAL DETALLS

SECTION VIEW
(2) LARGE LOG JAM - TYPE 2 (BURIED BALLAST)

NOTES:
. Wood structures wil reaure fild aduustuents as described by wwbwc
2. ALL LOGS SHOWN ARE TYPE E, AS SHOWN IN THE LARGE LOG JAM TYPE 1 AND TYPE 2 SCHEDULES.
3. ALL LOGS TYPE E WILL HAVE ROOTWADS AND WILL BE LOCALLY AVALLABLE CONIFER SPECIIS (E.G. PINUS PONDEROS
ge and consistent with specifications
5. LOG PLIES ON LARGE LOG JAM TYPE 1: IF MINMUM EMBEDMEN DEPTH REQUREMENT OR PULOUT TEST RESISTANCE
VALUE IS NOT ACHEVED FIRST BY VIBRATORY PLE DRVING, SEE SPECIFICATIONS FOR ALTTRNATVE INSTALLTION.
6. ALL LARGE LOG JAM (TTPE 1) LOG PLLES MUST be driven 13 feet below final grade.

(1) $\frac{\text { LARGE LOG }}{\text { TABLE }}$ JAM - TYPE 1 SCHEDULE

(2) $\frac{\text { LARGE LOG JAM - TYPE } 2 \text { SCHEDULE }}{\text { TABLE }}$

NOTES:

1. Wood structures will reauire filld aduustments as described by wwbwc.
2. ALL LOGS WILL BE LOCALLY AVALABLE CONIFER SPECIES (E.G. PINUS Ponderosa).
3. HABITAT BOULDERS SHALL BE 36° - 48° ON AVERAGE ANO CONSISTENT WITH SPECIFICATIONS
4. LOG PLES ON APEX JAM: IF MINMUM EMBEDMENT DEPTH REQUREMENT OR PULLOUT TEST
RESISTANCE VALUE IS NOT ACHIEVED FIRST BY PIE DRVIING, SEE SPECIIICATINS FOR ALTERNATIE RESISTANCE VA
INSTALATION.

APEXJAM				
NUMBER OF STRUCTURES: ${ }^{\text {ApEXJAM }}$				
material	SIZE	Root Wad	QUANTITY PER STRUCTUR	Total
TYPE	LENGTH X DIAM / ROCK SIZE DIA	YES/NO	EA/CY	EA/Cr
LOG TYPE F (EA)	25×2	No	1	5
LOG TYPE B (EA)	25×1.75	YES	2	10
$\underline{L O G T Y E G G(E A)}$	30×2	No	1	5
106 TYPE C (EA)	30×1.75	Yes	2	10
$10 G$ TYPE D(EA)	40×1.75	ves	2	10
$\begin{aligned} & \text { RACKIN (EA) WOOD } \\ & (\text { OA } \end{aligned}$	6-10 0 0.66-0.83	OPTIONAL	30	150
SLASH (CY)	$<10 \times<0.5$	No	32	160
LOG PILE (EA)	$20.25 \times 1.0-1.5$	No	16	80
$\underset{(\text { EA })}{\text { HABTIT BOUL }}$	$36^{\prime \prime}-48{ }^{\prime \prime}$	N/A	16	80
LIVE CUTIING (EA)	N/A	N/A	10	50

(1) $\frac{\text { APEX JAM }}{}$ JAB SCHEDULE

WILIOW TRENCH				
TOTAL L ENGTH OF FEATURE (LF) 900				
material	sIIE	Root Wad	QUANTITY PER STRUCTUR	TOTAL
TYPE	LENGTH X DIAM / ROCK SIZE DIAM	yes/no	FT/EA	SF/EA
EARTHWORK (SF)	N/A	N/A	3	2700
LVE CUTITING (EA)				

(1) $\frac{\text { WILLOW TRENCHING SCHEDULE }}{\text { TABE }}$

PLAN VIEW

ARGET EMBEDENT DEPTH SHOULD
ACHIEVE ONETHRD LENGTH OF THE LIVE CUTTING ONTACTNG GROUNO WATER AND
NOMRE HHA TWO-THRDS OF OVERALL
LENGTH BURIED NO MORE THAN TVM
LENGTH BURIED

SECTION VIEW

WLLOW TRENCHING DETAL SHHOWN O THIS SHEET PERTINENT TO PLANTINGS

COBBLESARETOO COARSE TO
BACKFLLL WITH CUT MATERAL.
1 FLOODPLAIN ROUGHNESS - WILLOW TRENCHING
tyPical detalls

PLAN VIEW

FLOODPL				
NuMBER OF STRUCTURES: 22				
material	SIIE	Root wad	QUANTITY PER STRUCTUR	$\begin{aligned} & \hline \text { TOTALI } \\ & \text { QuANTIT } \end{aligned}$
TYPE	LENGTH X DIAM ROCK SIZE DIAM	YEs/no	EA	EA/CY
106 TYPED (EA)	35×1.75	VES	1	22
LOG PILE (EA)	15×1.0	No	2	44
SLASH (CY)	$<10 \times<0.5$	No	3	66
Live cuting (EA)	N/A	N/A	2	44
$\underset{(\text { EA) }}{\text { RACKING WOOD }}$	6-10 0 0.66-0.83	OPTIONAL	6	132

(2) FLOODPLAIN PINNED LOGS SCHEDULE
(2) $\frac{\text { FLOODPLAIN ROUGHNESS - FLOODPLAIN PINNED LOGS }}{\text { TYPICAL DETAALS }}$

UPON COMPLETION OF EARTHWOR AND PLACEMENT OF STRUCTURES, SITE RESTORATION WILL BE COMPLETED IN COMPLIANCE WITH HABTAT MPROVEMENT PROGRAM (HIP) MEASURES, REFER
BETWEEN THE CONTRACTOR AND CONTRACTING OFFICER.
2. GROUND SURFACES (WITH SOLIS) IMPACTED BY PROJECT-RELATED ACTIVTIES WILL BE GRADED TO PROVIDE STABLITY FOR APPROVAL BY

ONTRACTION OFFICER. CONTRACTING OFFICER WIL BE RESPONSIBLE FOR SEEDIN
4. TOTAL APPROXIMATE RESTORATION AREA: 3.53 ACRES

FLOODPLAIN ROUGHNESS PLANTING WITH STINGER

For floodplain roughness structures or typical revegetation
LINE CUTTING SHALL BE SOAKE In N WAT
FOR 24 TO 48 PRIIR TO TLANTING
FLoodplain roughness wllow cuting instalations are contingent upon test pit results, per speciications. These RME OF CONSTRUCTIO
2. THIS DETALL PERTAINS TT THE FOLLOWING FLOODPLLIN ROUGHNESS FEATURES- INCLUDING: ROUGHENED GROUND, PINNED LOGS, AND WILLOW TRENCHING. WHERE EXCAVATION
A STINGER IS RECOMMENDED AS SHOWN.
3. FOLLOWING COMPLETION OF THE FLOODPLAIN ROUGHNESS FEATURE USE STINGER TO PLANT SPECIFIED LIVE CUTTING SPECIES. 1 I-

BACKFILL FLOODPLAIN ROUGHNESS OR BLEND DISTURBED ALUVUM

HABITAT STRUCTURE PLANTING

PLANTING METHODS
TYPICAL DETALIS

