Annual Report for the 2009 Recharge Season, Hall-Wentland Shallow Aquifer Recharge Site, Umatilla County, Oregon, and Walla Walla County, Washington

Prepared for: Walla Walla Basin Watershed Council And Walla Walla River Irrigation District

> By GSI Water Solutions, Inc.

Annual Report for the 2009 Recharge Season, Hall-Wentland Shallow Aquifer Recharge Site, Umatilla County, Oregon, and Walla Walla County, Washington

Prepared for the

Walla Walla Basin Watershed Council

and the

Walla Walla River Irrigation District

by

GSI Water Solutions, Inc.

1020 North Center Parkway, Suite F, Kennewick, WA 99336 Kevin Lindsey, LHG, Terry Tolan, RG, LGH, and Jon Travis

Under contract to the Walla Walla Basin Watershed Council, Funded by Washington Department of Ecology

December 2009

Executive Summary

Shallow aquifer recharge (SAR) has been conducted seasonally at the Hall-Wentland (H-W) Site in each of the previous four winter-spring seasons. During this time SAR did successfully recharge the underlying, shallow alluvial aquifer system. Furthermore, H-W Site SAR activities did not noticeably degrade local groundwater quality.

H-W Site SAR has been using passive infiltration focusing simply on letting water delivered to the site spread out across it, sink into the ground, and infiltrate through the vadose zone to the underlying alluvial aquifer system water table. The only site improvement done for the project this season focused on the water delivery system (ditches) through which water reaches it. Sediment and vegetative debris was periodically removed from them. Ditches, trenches, and other structures that might have been dug on-site to facilitate infiltration of water into the ground were not dug at the H-W Site in any of the four SAR seasons.

Water volumes delivered to the H-W Site were estimated from flow measurements collected at two locations, one where water was diverted from Wells Ditch into the ditch leading to the H-W Site (Branch Ditch) and one where the Branch Ditch enters the H-W Site. In the first SAR season, March and April 2006, the two water flow measurement points consisted of rectangular weirs. In subsequent SAR seasons, December 2006 through April 2007, April 2008, and February through April 2009, E-Z Flow[®] portable ramp flumes were installed at the upper end and lower end of the Branch Ditch to measure water flow. For all four SAR seasons, water flow through the measurement structures was calculated from stage (water depth) data recorded by a pressure transducer-datalogger installed on the upstream sides of the measurement structures. Water volumes estimated to have been diverted to the H-W Site in each of the four SAR seasons are as follows:

- 82 acre-feet diverted from Wells Ditch, with 68 acre-feet r to the H-W Site in the 40 day-long 2006 SAR season.
- 140 acre-feet diverted from Wells Ditch, with 106 acre-feet delivered to the H-W Site in the 116 day-long 2007 SAR season.
- 15.7 acre-feet diverted from Wells Ditch, with 14.9 acre-feet delivered to the H-W Site in the 14 day-long 2008 SAR season.
- 179.3 acre-feet diverted from Wells Ditch, with 171.8 acre-feet delivered to the H-W Site in the 68 day-long 2009 SAR season.

Water level data recorded by pressure transducer-dataloggers installed in three on-site, purpose-built monitoring wells indicates the shallow alluvial aquifer system responded rapidly to the delivery of water to the H-W Site. Within 24 hours of the start of SAR, or an increase in delivery rate of SAR water, water levels in the 3 monitoring wells rose. The shallow alluvial aquifer response to SAR is significantly quicker than that predicted by a large-scale infiltration rate evaluation conducted in the 2009 SAR season. This suggests recharge water infiltration through the vadose zone at the H-W Site occurs only beneath a small portion of the wetted surface area.

The water level data collected for the project also indicates that the shallow alluvial aquifer in the vicinity of the H-W Site responds to factors other than those related to H-W Site SAR operations. In some instances, off-season rises and falls in water level were at least as great, and sustained, as those resulting from SAR. Although these off-site influences on water level were not directly evaluated, likely phenomena influencing shallow alluvial aquifer water level include: (1) ditch operations, especially in unlined, leaky ditches, (2) well pumping, and (3) seasonal precipitation and run-off variation.

During the 2006, 2007, and 2008 SAR seasons, shallow alluvial aquifer water level data was manually measured in a number of off-site wells. The collection of this data indicated that the water table mound generated by H-W Site SAR extended for distances of several miles within 1 to 2 weeks of the start of the SAR season. Water level data from these same wells also showed a corresponding rapid decrease in the water table mound at the conclusion of each H-W Site SAR season.

H-W Site SAR surface-source water and groundwater samples were collected and analyzed for field parameters, basic water quality constituents, and synthetic organic compounds (SOC's) periodically before, during, and after each SAR season. The data collected to-date does not show discernable degradation of local groundwater as a result of H-W Site SAR operations. The data does show that surface-source water and groundwater are very similar geochemically. This, coupled with shallow alluvial aquifer water level data, strongly implies that the groundwater and surface water at the H-W Site have a high degree of direct hydraulic connection. A consequence of this direct hydraulic connection is that groundwater quality is largely controlled by surface water quality regardless of H-W Site SAR operations.

The main operational issues encountered with the H-W Site to-date are related to the very low gradient ditches, high silt and organic debris load in these ditches, and the fact that there is no single owner for the Wells Ditch system. The low gradient of the Branch Ditch made it difficult to build a water flow measurement weir or install a portable ramp flume with a sufficient head drop to result in stage measurements that could be used to calculate flow water volume. This may account for some of the differences in water volumes estimated at the upper and lower end of the Branch Ditch. The low gradient of Wells Ditch resulted in fouling of the fish screen placed at the Wells Ditch diversion weir. This fish screen, which was entirely passive as no power was available for it, relied on water flowing past it in Wells Ditch to remove fine sediment particles and larger suspended debris from the screen. These low flows were most common in December, January, and February. With the advent of the irrigation season, Wells Ditch flow generally increased enough to reduce fouling impacts.

With respect to operations and ownership, the lack of a single ditch owner/operator (either individual or corporate) hindered both operations and permitting. Because the Walla Wall River Irrigation District (WWRID), the Limited License holder does not own the H-W Site and ditches feeding it, and that they lie outside of the boundaries of the WWRID service area, meant that the WWRID had no control of the site. Consequently, WWRID could not invest resources into operations, maintenance, and upgrades. In addition, budget constraints limited the amount of on-site effort consultants could devote to operations. Day-to-day operations of the ditch system and H-W Site could only happen when local stakeholders, including Mr. Tom Page the local proponent, had the time and ability to operate gates, headboards, and other related equipment.

SAR at the H-W Site did result in aquifer recharge with no discernable groundwater degradation. Future site operations will benefit the shallow alluvial aquifer, but H-W Site operation and ownership will need to be addressed, likely by a local proponent stepping forward to assume any required operational maintenance, funding (including grants), and permitting responsibility.

Table of Contents

1.0 INTRODUCTION	1
2.0 2009 TIMELINE	3
3.0 ON-SITE WORK	4
4.0 WATER VOLUME USED IN 2009 TEST SEASON	5
4.1 Transducer Data from On-Site and Diversion Flumes	5
4.2 Infiltration Rate Tests	7
5.0 WATER LEVELS IN THE SHALLOW ALLUVIAL AQUIFER	9
5.1 Transducer Data from On-Site Monitoring Wells	9
5.2 Manually Measured Water Supply Wells	12
6.0 WATER QUALITY	13
6.1 Field and Basic Water Quality	13
6.2 SOC Water Quality	15
7.0 FOUR SAR SEASONS AT THE H-W SITE	15
7.1 Operation of the H-W SAR site	16
7.1.1 2006 SAR Season Operations	16
7.1.2 2007 SAR Season Operations	17
7.1.3 2008 SAR Season Operations	18
7.1.4 2009 SAR Season Operations	18
7.1.5 Operations Summary	19
7.2 Shallow Alluvial Aquifer Water Level	20
7.3 Groundwater Chemistry	21
8.0 SUMMARY AND RECOMMENDATIONS	24
8.1 Summary	24
8.2 Conclusions and Recommendations	27
9.0 REFERENCES CITED	28

List of Tables

Table 1. Results of infiltration tests. 1A – Assuming flow onto the H-W Site constant for subsequent 24 hours. 1B – Calculating average flow onto the H-W Site based on previous 24 hours. 1C – Calculating average flow onto the H-W Site based on previous 120 hours.

Table 2. Field and basic water quality results for the 2006, 2007, 2008, and 2009 SAR season.

Table 3. SOC results for the H-W Site.

List of Figures

Figure 1. Area and regional setting.

Figure 2. Local setting, including location of off-site wells used for water level monitoring and on-site wells used for water level and water quality monitoring.

Figure 3. Local setting, showing ditches, H-W Site boundaries, and location of groundwater quality monitoring wells.

Figure 4. Ramp flume at upstream end of Branch Ditch.

Figure 5. Ramp flume where Branch Ditch enters the H-W Site.

Figure 6. Calculated instantaneous flow through the two ramp flumes and total acre-feet delivered to the H-W Site during the 2009 SAR season.

Figure 7. Water levels in feet amsl before, during, and after the 2009 SAR season in the three H-W Site monitoring wells.

Figure 8. Measured water levels in the two off-site wells during the 2009 SAR season.

Figure 9. Source water and groundwater pH during the 2009 SAR season.

Figure 10. Electrical conductance (EC) in source water and groundwater during the 2009 SAR season.

Figure 11. Nitrate-N concentrations in source water and groundwater during the 2009 SAR season.

Figure 12. Total dissolved solids (TDS) in source water and groundwater during the 2009 SAR season.

Figure 13. Chloride concentrations in source water and groundwater during the 2009 SAR season.

Figure 14. Soluble reactive phosphorus (SRP) in source water and groundwater during the 2009 SAR season.

Figure 15. Hardness of source water and groundwater during the 2009 SAR season

Figure 16. Hydrographs for wells HW-1, HW-2, and HW-3 for February 2006 through June 2009, the 2006, 2007, 2008, and 2009 SAR season.

Figure 17. Water levels in wells HW-2, HW-2, and HW-3 compared to flows onto the H-W Site calculated for the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 18. pH in source water and groundwater during the 2006, 2007, 2008 and 2009 SAR seasons.

Figure 19. EC in source water and groundwater during the 2006, 2007, 2008 and 2009 SAR seasons.

Figure 20. Nitrate-N in source water and groundwater during the 2006, 2007, 2008 and 2009 SAR seasons.

Figure 21. Chloride in source water and groundwater during the 2006, 2007, 2008 and 2009 SAR seasons.

Figure 22. SRP in source water and groundwater during the 2006, 2007, 2008 and 2009 SAR seasons.

List of Appendices

Appendix A. 2009 Field Notes

Appendix B. 2009 Water Quality Data

1.0 INTRODUCTION

This report describes the results of the 2009 shallow aquifer recharge (SAR) season at the Hall-Wentland Site (H-W Site), reviews the results of the four seasons of SAR work done at the H-W Site to-date, and presents some conclusions and recommendations for future H-W Site SAR. SAR work being done at the H-W Site (and other sites in the Walla Walla Basin) is one of several water resource management strategies being explored by water resources stakeholders in the Walla Walla Basin of southeastern Washington and northeastern Oregon (Figure 1). The H-W Site is located in the SE ¼, NE ¼, Section 14, T6N, R35E, on private property south of Stateline Road in Oregon (Figures 1 and 2).

SAR at the H-W Site is being done under Oregon Water Resources Department (OWRD) Limited License 915 issued to the Walla Walla River Irrigation District (WWRID) in the fall of 2005. H-W Site SAR work currently is being funded by Washington Department of Ecology (ECOLOGY) through grants awarded to the Walla Walla Basin Watershed Council (WWBWC). SAR activities done at the H-W Site under Limited License 915 are conducted seasonally (with several stipulations and conditions) between November and April of the succeeding calendar year. Limited License 915 expires in April 2010.

The 2009 SAR season operations at the H-W Site began on 03 February 2009 and ended on 15 April 2009. Topics and information presented in this report with respect to the 2009 SAR season include the following:

- A timeline listing the major events associated with the 2009 SAR season (Section 2.0).
- Descriptions of H-W Site modifications and changes (Section 3.0).
- Rates and volumes of water delivered to the H-W Site (Section 4.0). As was the case in previous seasons, source water was ambient flow from the East Little Walla Walla River (ELWW) delivered to the project area via Wells Ditch (Figure 3). Also as in previous seasons, water was not diverted from the mainstream of the Walla Walla River for this project.

- Results of infiltration testing done at the H-W Site during the 2009 season (Section 4.0).
- Shallow alluvial aquifer water levels (both on-site and off-site), before, during, and after the 2009 season (Section 5.0).
- Results of groundwater and surface water quality monitoring before, during, and after the 2009 season (Section 6.0).
- In addition, this report includes a summary and analysis of the 4 SAR seasons completed-to-date (Section 7.0) and conclusions and recommendations with respect to the H-W Site SAR (Section 8.0).

This report is accompanied by appendices that contain data and information collected during the course of the 2009 season. These appendices are as follows:

- Appendix A. Field notes.
- Appendix B. Water quality data, including laboratory reports.

Work described in this report was done by GSI Water Solutions, Inc. (GSI), under Task Order 8 of GSI's Continuing Services Contract with the WWBWC. For the 2009 SAR season the project team included GSI staff and subcontractors, and WWBWC staff, who are as follows:

- Kevin Lindsey, Ph.D., L.HG. (GSI) GSI project manager and hydrogeologist (Washington).
- Terry Tolan, R.G, LGH. (GSI) Hydrogeologist (Oregon).
- Jon Travis (GSI) Project support.
- John Fazio, PE (Fazio Engineering) Project engineer, under contract to GSI.
- Tom Page (independent land owner) Site operator and local point of contact, under contract to GSI.

- Bob Bower (WWBWC) WWBWC lead for water resources projects, and contract manager for the WWBWC's contracts with ECOLOGY.
- Troy Baker (WWBWC) Water quality sampling.
- Nella Parks (WWBWC) Data support.

The basic H-W Site layout for the 2009 SAR season was very similar to that of the preceding seasons (Figure 3).

2.0 2009 TIMELINE

The project timeline presented here lists the main project activities and actions for the 2009 SAR season. Notes and documents describing many of these actions and events are attached to this report in Appendix A. Laboratory reports for water quality analysis results are reproduced in Appendix B.

- 28 October 2008; initial pre-season water quality sampling event for field, basic and synthetic organic compound (SOC) groundwater parameters in wells HW-2 and HW-3. Well HW-1 was not accessible at the time of sampling. Source-water samples were not collected because of a lack of flow onto the site.
- 16 December 2008; second pre-season water quality sampling event for field, basic, and SOC parameters in wells HW-1, HW-2, and HW-3. Source-water samples were not collected because of a lack of flow onto the site.
- 09 January 2009; fish screen installed at the diversion on Wells Ditch. E-Z Flow[®] portable ramp flumes installed in the Branch Ditch just below the Wells Ditch diversion weir and where the Branch Ditch enters the H-W Site. Branch Ditch cleaned out with backhoe, removing excess silt, mud, and vegetative debris.
- Throughout January 2009; stream flow at Stateline Road gauge on the ELWW was calculated to be consistently below 3.5 cubic feet per second (cfs). Flow in the ELWW must exceed 3.5 cfs (the minimum required flow per Limited License 915) for SAR operations at the H-W Site to be conducted. This determination

was based on visual observation of water level on the staff gauge and comparison of that water level to preliminary rating curve provided by ECOLOGY staff.

- 03 February 2009; SAR season begins when flows in the ELWW exceed 3.5 cfs.
 Transducers installed in the two Branch Ditch ramp flumes.
- 13 February 2009; water quality sampling event for field and basic parameters in groundwater and source water.
- 03 February to 15 April, 2009; ongoing SAR operations with most of the recharge water delivered to the Hall (eastern) portion of the H-W Site. H-W Site visited every 1 to 2 days to clean fish screen and to check flow in ELWW at Stateline Rd. Maps showing the estimated wetted area of the Hall pasture (Appendix A) were made on 26 February and 03, 13, 20, and 26 March 2009.
- 12 March 2009; Mid-season water quality sampling event for the field and basic parameters in monitoring well HW-3 only. Sampler did not report reasons for not sampling the other locations.
- 15 April 2009; SAR season ends. Fish screen, weir boards used to control delivery of the water to Branch Ditch, and ramp flumes removed. Wells Ditch and Branch Ditch return to normal use.
- 23 April 2009; Post-SAR water quality sampling event for field and basic parameters in all three H-W Site monitoring wells and surface water.
- 28 May 2009; A second post-SAR season water quality sampling event in the three H-W Site monitoring wells and surface water was conducted.
- Summer and autumn 2009; SAR season report prepared.

3.0 ON-SITE WORK

Work done for the 2009 SAR season focused on improving water flow through the ditch

system that supplies water to the H-W Site, especially Branch Ditch. A backhoe was used to clear accumulated sediment and overgrown grasses from the Branch Ditch to improve water flow through it. This was done from the Wentland pump sump pond upstream to the north fence line of the pasture that contains the Wells Ditch diversion structure. This work was done in early January 2009.

In February 2009, in the SAR season a 20 foot by 20 foot grid was marked out on the Hall portion of the site using wooden posts and string. This grid was used to estimate the wetted area of the site periodically during the season. Field notes and sketched maps documenting the wetted area are reproduced in Appendix A. The use of these wetted area estimates are described in the following section.

4.0 WATER VOLUME USED IN 2009 TEST SEASON

The volume of water delivered to the H-W Site during the 2009 SAR season was calculated from staff gauge readings and transducer data collected between 03 February 2009 and 15 April 2009 at two E-Z Flow[®] ramp flumes installed in the Branch Ditch that delivers water to the H-W Site. One ramp flume was placed in the Branch Ditch just downstream of the diversion weir structure on Wells Ditch (Figure 4) and it was used to calculate the flow diverted from Wells Ditch into the Branch Ditch. The second ramp flume was placed in the Branch Ditch where it enters the H-W Site (Figure 5). This ramp flume was used to calculate water flow onto the H-W Site. Flow calculations from both flumes were used to estimate the total volume of water delivered to the H-W Site in the 2009 SAR season. Hydrographs plotting instantaneous water flow (cfs) calculated at each flume and calculated accumulative water volume (acre-feet) across the two ramp flumes are shown on Figure 6.

4.1 Transducer Data from On-Site and Diversion Flumes

The two portable ramp flumes used to measure water flow diverted from Wells Ditch and delivered to the H-W Site are equipped with staff gauges calibrated to cfs. For this project we also installed a 10 psi Levellogger[®] transducer on the upstream side of each flume. The Levellogger[®] was installed in a 2-inch tube anchored to a steel post, and was programmed to measure water level hourly.

Levellogger[®] data for both ramp flumes was calibrated to the 0 cfs flow mark on the staff gauge attached to the flume by using a correction factor. The correction factor corresponded to the vertical elevation difference between the 0 cfs mark on the flume staff gauge and the sampling port on the transducer. In both flumes the transducer sampling port was below the 0 mark on the corresponding staff gauge. The on-site ramp flume correction was done by subtracting 0.088 feet from the transducer water depth data. The diversion ramp flume correction was done by subtracting 0.100 feet from the transducer water depth data. Following the correction for water depth, transducer data for both the on-site flume and diversion flume was converted to instantaneous flow, using the following equation:

 $Q = 0.07106 (h)^{1.615}$

where,

Q = flow in cfs,

and

h = depth of water (in inches) across the measurement sill.

Calculated instantaneous water flow rate for the hourly stage (water level) measurements made at the on-side ramp flume, generally ranged from approximately 0.87 to 1.47 cfs with the average flow rate being approximately 1.12 cfs. For the ramp flume at the Wells Ditch diversion weir, water flow rates range during operation generally ranged between approximately 0.97 and 1.53 cfs, with average flow being approximately 1.25 cfs. The hourly instantaneous water flow rates were used to estimate the approximate volume of water that flowed past each ramp flume.

The primary assumption made to estimate the volume of water that flowed past each ramp flume is that the calculated hourly instantaneous water flow rate is generally representative of average hourly flow conditions during the following hour. While not completely accurate, the hour-to-hour variation seen in measured water level and calculated instantaneous flow rates suggests that flow through the two ramp flumes rarely varied by more than 0.05 feet, or 0.0005 cfs each hour. Given that small variability, it is assumed that the calculated instantaneous flow rate at any time generally

is representative of the water flow rate over the entire subsequent hour (e.g. until the next instantaneous water flow rate measurement is calculated from water depth). Calculated instantaneous water flow rate (in cfs) was converted to an estimated flow volume measured in acre-feet, for the subsequent hour.

Using these calculations, it is estimated that 173.7 acre-feet of water flowed through the on-site ramp flume and was delivered to the H-W Site between 03 February 2009 and 15 April 2009 during the 2009 SAR season (Figure 6). During the 72 day 2009 SAR season, the average daily volume of water delivered to the H-W Site was approximately 2.41 acre-feet. Total approximate volume of water diverted through the ramp flume at the diversion weir on Wells Ditch was 180.7 acre-feet, which is an average of approximately 2.51 acre-feet/day. Based on these estimated volumes, approximately 0.1 acre-feet/day of water was lost to seepage along the several hundred feet of the Branch Ditch between the two ramp flumes.

The average delivery rates noted above do not reflect changes in delivery and flow seen in the first portion of the season (before 13 March) versus those seen later. During the first portion of the season the daily average water delivery rate to the H-W Site was less than 2.41 acre-feet/day, later in the season it was higher. This can be readily seen in Figure 6. On many days prior to 13 March, average daily water delivery rate may have been as little as half (1.2 acre-feet/day) of the overall seasonal average.

4.2 Infiltration Rate Tests

One of the objectives of the work done during the 2009 SAR season was to estimate unit area infiltration rate(s) at the H-W Site. Use of a fixed size infiltrameter was discarded for this effort because the large size of the area of infiltrating water (wetted area) during operation, variability in surface materials (mud and silt to cobble gravel), and limited budget precluded collecting enough infiltrameter data to characterize the likely variability. Furthermore, because no infiltration structures (ditches, basins, etc.) were built, no fixed area on the site received water. This also limited our ability to estimate infiltration rate during operation as the foot print of the actual area of recharge was irregular and changing throughout SAR operations.

To work around these challenges and estimate an average infiltration rate over the whole site, the H-W Site was mapped and marked with a 20 foot by 20 foot grid. This was done only on the Hall portion of the site, as the Wentland portion generally was not used during the 2009 SAR season. Five times during the SAR season a scaled sketch map of the wetted area was made from field observations. From these sketch maps the approximate wetted area covered by recharge water delivered to the site at those times was estimated. The area of the wetted foot print for each of the five days is listed on Table 1. The scaled sketch maps are reproduced in Appendix A.

Using the wetted area at any given time, average infiltration rate over the entire area of the H-W Site was estimated using several approaches:

- The calculated instantaneous flow rate at the on-site flume at the time of the site visits was converted to gallons per day and divided by the wetted area to estimate infiltration rate (per day) on a unit volume and area basis, and a velocity basis.
- The second method used the average flow onto the site in the previous 24 hour period. This average flow was converted to gallons per day which was then divided by the size of the wetted area. This was then used to estimate infiltration rate (per day) on a unit volume and area basis, and a velocity basis.
- The third method used the average flow onto the site based on the pervious 5day total volume delivered to the site. This 5-day average flow was then divided by the size of the wetted area to estimate infiltration rate on a unit volume and area basis, and a velocity basis.

Each approach yields, at best, a conservative average infiltration rate as they assume infiltration is the same across the entire wetted area. They do not account for heterogeneity across the site, including variation in underlying soils and geology and shifting wetting patterns as the shape of the wetted area changes – possibly in response to vadose zone moisture content, pore plugging, and vegetation changes. These estimates also do not account for the likelihood that infiltration to groundwater only occurs beneath a portion of the total wetted area. Depending on all of these variables, and probably others, minimum infiltration rates over the entire wetted area are estimated

to range between approximately 3.8 to 8.2 feet/day (measured as velocity) and 28 to 61 gallons/day/square foot (measured as volume per unit area). Comparing these estimates to water level changes seen in H-W Site monitoring wells suggests they are conservative.

Depth to groundwater data for the nearest down-gradient monitoring well, HW-1, offers additional insight into possible infiltration rate(s) at the H-W Site. Water level in HW-1, located just a few hundred yards down-gradient of the center of the H-W Site, generally began to rise within 24 hours of the start of recharge (Figure 7). Depth to water in this well generally ranges between 25 and 30 feet below ground surface (bgs). Its response to the start of recharge operations indicates the vertical velocity through the vadose zone must be in excess of 25 feet/day in order for recharge water to reach the water table and manifest as a rise in water level in the well. This is significantly higher than the infiltration rate estimated using the aforementioned methods, 3.8 to 8.2 feet/day. This suggests infiltration is variable across the site, and probably only occurs in portions of the total wetted area. Given the difference in estimated vadose velocity noted above (25 feet/day versus 3.8 to 8.2 feet/day) the active area of infiltration could be only 1/6 to 1/3 of the actual wetted area.

5.0 WATER LEVELS IN THE SHALLOW ALLUVIAL AQUIFER

As was done in previous SAR seasons, water levels were tracked in on-site monitoring wells HW-1, HW-2, and HW-3. Unlike previous years though, water level data collection in off-site wells was done in only 2 wells for the 2009 SAR season. Water level data in monitoring wells and the off-site wells was collected using digital transducers and data loggers. This differs from pervious SAR seasons where off-site water level data was collected manually, using an electric water level measuring tape (e-tape).

5.1 Transducer Data from On-Site Monitoring Wells

Water level data collected in the 2009 SAR season from each of the three on-site monitoring wells is summarized below and shown on Figure 7.

Water level in well HW-1 (at the north end of, and down-gradient of, the H-W Site) generally increased in the month prior to the start of the SAR season, reaching approximately 742.45 feet above mean sea level (amsl) on 03 February 2009 at the start of the SAR season. It continued to rise to an elevation of approximately 743.62 feet amsl on 12 February 2009. For the next month, the water level in HW-1 slowly declined, as did the delivery rate of water to the site (Figure 6). In mid-March, the water level began to rise after reaching a low of approximately 742.18 feet amsl on 12 March 2009. This rise began within several days of the beginning of increased water delivery to the H-W Site. On 08 April 2009 water level in HW-1 reached its highest point, 749.35 feet amsl, for the 2009 SAR season, 7 days before the end of the season. The final water level elevation measured at the end of the 2009 SAR season, 748.11 feet amsl, was 5.66 feet higher than the water level measured on the first day of the SAR season. On 15 April, following the end of the 2009 SAR season the water level in HW-1 declined to below the pre-season level.

Well HW-3 is, like HW-1, located down-gradient of the H-W Site and it displayed water level changes similar to, but more subdued than those seen in HW-1 (Figure 7). In the month prior to the start of the 2009 SAR season the water level in HW-3 generally increased, reaching approximately 738.06 feet amsl on 03 February 2009 at the start of the season. Following the start of the 2009 SAR season the water level in HW-3 continued to rise for several more days reaching a high of approximately 738.34 feet amsl on 13 February 2009. From then until 12 March 2009 water level fell, reaching a low of 737.54 feet amsl. Like in well HW-1, the water level in HW-3 began to rise reaching a high of 740.83 feet amsl on 10 April 2009, five days before the end of the SAR season. The beginning of this rising trend corresponded to increased delivery of water to the H-W Site. The water level in well HW-3 at the end of the SAR season, 740.66 feet amsl, was 2.6 feet higher than the water level measured at the start of the 2009 SAR season. Following the end of the season water level declined to below preseason levels.

The hydrograph for well HW-2, the up-gradient well, displays some differences relative to the two down-gradient wells (Figure 7). Like the down-gradient wells, water level in HW-2 generally was rising in the month prior to the start of the 2009 SAR season, reaching a high of 758.55 feet amsl on 03 February 2009. However unlike the two

10

down-gradient wells, the water level in HW-2 began to fall within a few hours after the start of the 2009 SAR season.

Looking at a map of the H-W Site and immediate vicinity (Figure 3) offers some clues as to what may have caused this drop in water level in the HW-2 well at the start of the 2009 SAR season. Wells Ditch, the primary conduit for delivery of water to the immediate vicinity of the H-W Site is less than 100 yards south, up-gradient, of well HW-2, which is in turn up-gradient of the H-W Site. The diversion point on Wells Ditch where water is redirected into the Branch Ditch towards the H-W Site is southeast of well HW-2. This diversion location is up-gradient (groundwater flow direction) and up-stream (in Wells Ditch) of well HW-2 (Kennedy/Jenks, 2006; GSI, 2007, 2008). During the first month or more of the 2009 SAR season the majority of Wells Ditch flow was diverted down the Branch Ditch to the H-W Site and Wells Ditch flow was greatly reduced in the area immediately up-gradient of well HW-2. The steady water level decline seen in HW-2 throughout much of the first 2/3 of the 2009 SAR season is interpreted to reflect the loss of recharge to the aquifer up-gradient of HW-2 as most Wells Ditch flow was redirected to feed the H-W Site, down-gradient of well HW-2.

In late March, water level in HW-2 began to rise. The most likely explanation for this observed rise is the increased flow through Wells Ditch as the spring irrigation season began. With the advent of the irrigation season more water was flowing through the Wells Ditch, and other ditches up-gradient of HW-2, to meet irrigation demands. As a result, Wells Ditch, and other ditches, up-gradient of HW-2 leaked water, recharging the alluvial aquifer and causing rising water levels. A portion of this rise may reflect the continued operation of the H-W Site that generated a groundwater mound that propagated up-gradient to HW-2.

The fluctuations seen in water level in well HW-2 following the end of the 2009 SAR season can not be explained by H-W Site operation given that it is occurring days to weeks following the end of SAR operations. These water level fluctuations likely reflect Wells Ditch operation, well pumping, and other ditch operations in the project area.

Based on water level data collected from wells HW-1, HW-2, and HW-3 the alluvial aquifer underlying the H-W Site responded to SAR activities during the 2009 SAR season. Water levels in the down-gradient wells, HW-1 and HW-3, began to rise within

11

one day of the start of the SAR season. Additionally, when recharge volumes increased in late March, both down-gradient wells responded with rising water levels. The upgradient well, HW-2, showed more changes in water level than the down-gradient wells, including a marked decline following the start of the SAR season. This decline is interpreted to be, at least in part, a result of the diversion of flow from Wells Ditch to the Branch Ditch and the H-W Site. Later in the SAR season, as irrigation demands increased and more water flowed down Wells Ditch and was not diverted into the Branch Ditch, HW-2 water level rose.

5.2 Manually Measured Water Supply Wells

For the 2009 SAR season, unlike previous seasons, water levels in off-site wells were collected using digital transducers and dataloggers. This was done in 2 wells, designated MC-9 and GW-102 (Figure 2). In preceding SAR seasons, MC-9 was measured manually, and GW-102 was not measured. However, GW-102 is close to a well (MC-3a) that in previous H-W SAR seasons occasionally had water level measurements taken. The transducers in wells MC-9 and GW-102 were installed and operated by WWBWC staff who then provided data from them to GSI for use in this report. Hydrographs for the 2 wells during the 2009 SAR season are shown in Figure 8.

Water level in well MC-9 appears to have responded to SAR activities at the H-W Site. Although the water level response is more subdued than seen in the H-W Site monitoring wells, it does display the pre-season rise followed by the early season drop which ends in mid-March. Also like the on-site monitoring wells, well MC-9 displays a generally increasing water level in the final month of the 2009 SAR season as more water was delivered to the H-W Site.

No apparent response to H-W Site SAR operations is observed in off-site well GW-102. Water level in this well at the beginning and end of the recharge season is essentially the same.

6.0 WATER QUALITY

Water quality sampling and analysis for the 2009 SAR season generally was performed as described in the project monitoring and testing plan (Kennedy/Jenks, 2005). However, unlike the preceding three seasons, sampling and analysis was not done by Kuo Testing Laboratories, Inc. Instead, sample collection was done by WWBWC staff and water quality analysis was performed by Edge Analytical, Inc. The results of 2009 source water and groundwater quality sampling and analysis are described below. Table 2 presents 2009 and previous SAR seasons data for field and basic parameters. Table 3 presents 2009 and previous SAR seasons SOC data. Laboratory reports are reproduced in Appendix B.

6.1 Field and Basic Water Quality

SAR source water samples were collected from the Branch Ditch where it enters the H-W Site. Up-gradient groundwater samples were collected from well HW-2. Downgradient groundwater samples were collected from wells HW-1 and HW-3. Field parameters were measured at the time samples were collected.

The two pre-season sampling events were performed on 28 October 2008 and 16 December 2008, while the 2009 SAR season started on 03 February 2009. The long period of time between the final pre-season sampling event and the start of the 2009 SAR season was because cold snowy weather in late December 2008 and January 2009 hindered field work and resulted in ELWW flow levels below 3.5 cfs. During the 2009 SAR season, water quality samples were collected on 12 February and 12 March 2009. Post-season sampling was done on 23 April 2009 and 28 May 2009.

General observations with respect to field and basic water quality parameters during the 2009 SAR season are as follows:

 Groundwater pH decreased slightly from before the start of the SAR season (6.54 to 6.91) to following the end of the season (6.30 to 6.43) (Figure 8). The largest variation was seen in down-gradient well HW-1, dropping from 6.91 to 6.34. Up-gradient pH usually was slightly less than down-gradient pH. Source water pH (7.27 to 7.54) was higher than groundwater pH.

- Electrical conductivity (EC) (Figure 10) generally decreased from before the 2009 season to following the end of the season (1490-1860 ms/cm to 1420-1750 ms/cm). No up-gradient to down-gradient trend could be ascertained and source water EC was less than groundwater EC.
- Nitrate-N (Figure 11) concentrations in source water and groundwater before, during, and after the 2009 SAR season were low (<3 mg/L). There was no obvious trend between the pre-season and post-season and up-gradient and down-gradient. Source water nitrate-N concentrations are lower than in groundwater.
- Total dissolved solids (TDS) (Figure 12) concentrations in groundwater decreased from before the 2009 SAR season to after the season, although there appears to be no readily apparent up-gradient to down-gradient variation or trend. Pre-season concentrations ranged from 125 to 149 mg/L, during the season they ranged from 105 to 125 mg/L, and in the post-season that ranged from 96 to 122 mg/L. Source water TDS was lower than groundwater TDS.
- Chloride (Figure 13) concentrations in all three monitoring wells generally were less than or equal to 3.2 mg/L before the 2009 SAR season. Shortly after the start of the season, concentrations in all wells increased slightly, ranging from 2.3 to 3.8 mg/L. Following the 2009 season chloride concentrations in all wells and source water decreased slightly, 2.6 to 3.7 mg/L. Source water chloride concentrations were less than those seen in groundwater.
- Soluble reactive phosphorus (SRP) (Figure 14) concentrations showed small fluctuations (exclusive of the early March sample in HW-3) before, during, and after the 2009 SAR season.
- Hardness (Figure 15) showed some variation, ranging between 53.7 and 74 mg/L before the season and between 44.8 and 70.40 mg/L following the season.
 There is no readily apparent up-gradient to down-gradient trend, although source water may have a slightly lower hardness than groundwater.

 Chemical oxygen demand (COD) (Table 2) generally was at, or below, the minimum detection limit (MDL) of 8 mg/L in all samples, except in source water which had a COD of 14 mg/l on 12 February 2009.

Basic and field water quality parameters for the 2009 SAR season are interpreted to indicate source and groundwater in the immediate vicinity of the H-W Site is very similar geochemically and that SAR activities have not degraded groundwater quality. Except for pH and SRP, source water parameter concentrations are lower than what is found in groundwater. This could indicate that the source of these constituents lie up-gradient of the H-W Site. Alternatively, SAR activities may be flushing small quantities of mineral salts from the soil column into the groundwater. However, because there is no consistent up-gradient to down-gradient trend suggesting the predominance of the later case, much of the variation in groundwater quality seen in the 2009 SAR season is inferred to be the result of off-site, up-gradient factors.

6.2 SOC Water Quality

Water samples that were analyzed for synthetic organic compounds (SOC) were collected during the 28 October 2008 and 16 December 2008 sampling events. There were no SOC detections in any of these samples. The SOC data for the 2009 SAR season is interpreted to indicate SOC's were most likely not present or at very small concentrations in source water and groundwater.

7.0 FOUR SAR SEASONS AT THE H-W SITE

This section presents a synthesis of basic observations and interpretations concerning the quantity of water delivered to the H-W Site during the past four SAR seasons, and how alluvial aquifer water level and water quality responded to SAR. Basic changes in H-W Site operation for each of the four SAR seasons also are summarized.

7.1 Operation of the H-W SAR site

Since SAR activities first started at the H-W Site under Limited License 915, four SAR seasons, of variable length, have been completed. The differences in SAR season length were the result of administrative factors (human-related) and environmental factors (natural). The most common administrative factors that influenced SAR season length were related to limitations, and/or delays, in project funding which tended to delay the start of the SAR season, this was most notable for the 2006 SAR season. Environmental factors that influenced H-W Site operations centered on weather conditions and stream flow. Cold winter weather conditions impacted H-W Site operations when freezing inhibited normal ditch operations. Low stream flows in the ELWW invoked Limited License 915 conditions which restricted operations. Low flow in Wells Ditch also impacted operations. The following sections summarize operational issues and conditions, including flow estimates and water volumes delivered, in each of the four past SAR seasons at the H-W Site.

7.1.1 2006 SAR Season Operations

This summary of 2006 SAR operations is taken from the 2006 H-W Site annual report (Kennedy/Jenks, 2006). The 2006 SAR season began on 06 March 2006 and ended on 15 April 2006. For the 2006 SAR season the volume of water diverted towards the H-W Site was calculated from stage measurements collected at the Diversion Weir where water was diverted from Wells Ditch into the Branch Ditch. The volume of water arriving at the H-W Site, via the Branch Ditch, was calculated from stage measurements made for a weir placed in the Branch Ditch where it enters the H-W Site.

During the 2006 SAR season instantaneous flow through the Branch Ditch to the H-W Site was calculated to have ranged from approximately 0.6 to 2.4 cfs, although it generally averaged less than 1.4 cfs. Flow variability is interpreted to be related primarily to fish screen plugging and variations in Wells Ditch flow. Based on flows calculated for the Diversion Weir on Wells Ditch, 82 acre-feet of water is estimated to have been diverted down the Branch Ditch towards the H-W Site during the 40 days of the 2006 SAR season. During that same period, 68 acre-feet is estimated to have been delivered to the site proper, based on flows calculated through the on-site weir. Given these estimates, approximately 2.05 acre-feet/day was diverted to the H-W Site from Wells Ditch, 1.7 acre-feet/day arrived on-site, and approximately 0.35 acre-feet/day was lost from the Branch Ditch. This difference between diverted and delivered water probably resulted from a combination of measurement inaccuracy in the weirs, seepage of water out of the Branch Ditch into the ground, and undocumented diversions out of the Branch Ditch by other water users. In Kennedy/Jenks (2006) it was concluded that low gradient of the Branch Ditch resulted in lower flow calculations by inhibiting flow through the measurement weir.

7.1.2 2007 SAR Season Operations

This summary is taken from information in GSI (2007). The 2007 SAR Season began on 21 December 2006 and ended, as stipulated in Limited Licenses 915, on 15 April 2007. For the 2007 SAR season portable E-Z Flow[®] ramp flumes were installed in the Branch Ditch to measure flow in it just downstream of the Wells Ditch Diversion and where the Branch Ditch enters the H-W Site. A transducer-datalogger was installed in a perforated PVC tube placed a few feet upstream of each ramp flume.

For the 116 day long 2007 SAR season, the total volume of water calculated to have been diverted from Wells Ditch into the Branch Ditch was approximately 140 acre-feet. Flow calculates for the ramp flume at the H-W Site indicate approximately 106 acre-feet of water reached the H-W Site. For the first 2/3 of the 2007 SAR season flows through the Branch Ditch usually were less than 0.5 cfs. For the last 6 weeks of the 2007 SAR season average flow in the Branch Ditch generally exceeded 0.5 cfs, and commonly was greater than 1 cfs. As in the 2006 SAR season, the differences in calculated flow diverted from Wells Ditch and delivered to the H-W Site probably resulted from a combination of measurements, errors, seepage into the ground between the two ramp flumes, and undocumented diversions out of the Branch Ditch by other water users.

The change in flow onto the H-W Site calculated from ramp flume stage data during the 2007 SAR season is interpreted to reflect changing flow volumes in Wells Ditch and fish screen plugging. Throughout most of the 2007 SAR season, up until early March 2007, Wells Ditch flows were low and the fish screen installed at the Wells Ditch diversion repeatedly was plugged as flows in Wells Ditch were not enough to clean the screen.

With the advent of the spring irrigation season, as flow through Wells Ditch increased, the fish screen experienced less plugging and more water was diverted to the H-W Site.

7.1.3 2008 SAR Season Operations

This summary is taken from information in GSI (2008). The 2008 SAR season was the shortest of the four SAR seasons at the H-W Site, beginning on 01 April 2008 and ending on 15 April 2008. The reason the 2008 SAR season was only 15 days long was because flow in the ELWW at the Stateline gauge consistently fell below 3.5 cfs. As stipulated in Limited License 915, flow at that gauge must be at least 3.5 cfs for H-W Site operations to occur. For the 2008 SAR season this did not occur until 01 April 2008. Like the preceding SAR seasons, flow diverted from Wells Ditch and delivered onto the H-W Site were from stage data collected from two E-Z Flow[®] portable ramp flumes.

The total volume of water diverted from Wells Ditch for H-W SAR and than arriving onsite via the Branch Ditch were 15.8 acre-feet and 14.9 acre-feet, respectively. Average flows through both flumes in the 2008 SAR season rarely exceeded 1 cfs and commonly were less than 0.5 cfs. These low flows are directly attributed to a very small water supply in the ELWW and associated ditches during the 2008 SAR season.

7.1.4 2009 SAR Season Operations

As discussed earlier in this report, the 2009 SAR season began on 03 February 2009 and ended on 15 April 2009, lasting 72 days. Like the pervious two SAR seasons, flows diverted from Wells Ditch and delivered to the H-W Site were calculated from stage data collected at two E-Z Flow[®] portable ramp flumes placed in the Branch Ditch. Prior to mid-March flow through the Branch Ditch onto the H-W Site generally ranged from 0.8 to 1.3 cfs. During the last month of the 2009 SAR season flow in the Branch Ditch usually exceeded 1.0 cfs and commonly was greater than 1.75 cfs. This change in flow, which is similar to what was seen during the 2007 SAR season is interpreted to be the result of increased flow in the ditch system because of the advent of the irrigation season and a corresponding increase in fish screen cleaning efficiency.

For the 72 day long 2009 SAR season approximately 179.3 acre-feet of water was diverted from Wells Ditch, of which 171.8 acre-feet was delivered to the H-W Site. This difference, which is proportionally less than has been seen in previous seasons is attributed predominately to two factors: (1) ditch loss from water leaking out of the Branch Ditch between Wells Ditch and the H-W Site, and (2) increased measurement accuracy related to better set-up of the ramp flumes as the team learned how to use them.

7.1.5 Operations Summary

In the 2006 SAR season the amount of water diverted to the H-W Site was calculated from stage measurements taken at two weirs in the Branch Ditch. Stage data from portable ramp flumes were used in the subsequent three SAR seasons to calculated flow diverted from Wells Ditch and delivered to the H-W Site. In all cases, stage data was collected using digital data loggers-transducers and then used to calculate flow.

The 2007 and 2009 seasons saw fairly low flows early in each season and higher flows later in these seasons as spring irrigation got underway. The start dates for both the 2008 and 2009 SAR seasons were influenced by weathers conditions, 2008 being delayed by low flow conditions; 2009 being delayed by freezing conditions. In all four SAR seasons the fish screen at the Wells Ditch diversion was subject to repeated plugging problems, which were most severe during periods of low flow in Wells Ditch. With low flow, stream velocity was to low to effectively clean the screen.

For the four SAR seasons a total of approximately 368 acre-feet of water is estimated to have been delivered to the H-W Site while approximately 416 acre-feet was diverted from Wells Ditch. Average daily recharge at the H-W Site for the 2006, 2007, 2008, and 2009 SAR seasons was approximately 1.7 acre-feet/day, 0.91 acre-feet/day, 0.99 acre-feet/day, and 2.4 acre-feet/day, respectively. The changes in water delivery season-to-season are attributed largely to water availability in the Wells Ditch system and more effective fish screen cleaning at higher flows.

7.2 Shallow Alluvial Aquifer Water Level

Alluvial aquifer water level in the vicinity of the H-W Site varied in response to H-W SAR Site operation and external factors. Depth to water in the alluvial aquifer underlying the H-W Site during the four SAR seasons varies by 10 to 20 feet in the three on-site wells:

- In HW-1 groundwater usually lay 20 to 25 feet bgs, but it was as shallow as 15 feet bgs and as deep as 30 feet bgs.
- In HW-2 groundwater usually was found at 12 to 18 feet bgs, but it would be as shallow as 10 feet bgs and as deep as 30 feet bgs or more.
- In HW-3, groundwater was usually 18 to 22 feet bgs, but it could be as shallow as 15 feet bgs and as deep as 25 feet bgs or more.

When SAR was being done at the H-W Site, alluvial aquifer water levels rose in response to recharge (Figure 6). Infiltration rates estimated during the 2009 SAR season suggest SAR water should reach the water table within 2 to 4 days of the start of recharge. Monitoring well responses seen in the four SAR seasons indicates travel times from the surface to the water table are generally less than 24 hours. Comparing water level changes in the on-site wells to those manually measured in off-site wells (Kennedy/Jenks, 2006; GSI, 2007, 2008) suggest the pressure wave caused by recharge, manifest in water level rises, could be seen out to a distance of 1 or 2 miles within a few days to a week or two of the start of each SAR season.

The water level data collected to-date shows that SAR at the H-W Site does successfully recharge the alluvial aquifer system (Figure 17). In the 2006 and 2008 SAR seasons, the alluvial aquifer quickly and visibly responded to the delivery of water to the H-W Site (Figure 17). At the start of each season water levels in all 3 site wells increased. In the 2006 SAR season water levels also fell as soon as SAR ended on 15 April 2006. During the 2008 SAR season this was not observed, as water level continued to rise following the SAR season. The alluvial aquifer responded differently to H-W SAR during the 2007 and 2009 season (Figure 17). In the 2007 and 2009 SAR seasons aquifer water levels fell after showing early rises immediately following the start of each season. These water level drops coincided with declining water delivery to the H-W Site as fish screen

plugging issues and low ELWW flows persisted in January, February, and early March of each season. Both seasons saw an increase in surface water supplies beginning in mid-March, at which time water delivery to the H-W Site increased and water levels in site wells rose.

The water level data collected for this project also shows that there are other influences on the alluvial aquifer in the H-W Site area. Some of these have an equal, or even greater, impact on aquifer water level than H-W SAR did at the water volumes and flow rates used in the four SAR seasons. Based on the water level data collected to-date these factors may include, but are not limited to, the following:

- 1. Increased flow through the Wells Ditch system, resulting in increased ditch leakage and recharge of the underlying alluvial aquifer.
- Conversely, decreased flow through Wells Ditch immediately south of the H-W Site lead to declines in groundwater level.
- 3. Increased flow through the East and West Little Walla Walla River systems, resulting in increased infiltration and recharge of the underlying alluvial aquifer in the general vicinity of the H-W Site, also may account for water level increases in alluvial aquifer. Decreased flow in these streams, the opposite effect.
- 4. Increased pumping of irrigation and water supply wells in the area, resulting in removal of water from the aquifer system and corresponding water level declines.

The work done for the project was unable to assess these possible influence and others, simply because access to off-site locations was limited by most being on private property.

7.3 Groundwater Chemistry

Basic and SOC water quality parameters in the four seasons of H-W Site SAR generally show little variation and are consistent with a surface water-groundwater system with a high degree of continuity, even in the absence of SAR. Observations specific to tested water quality basic parameters over the course of the four SAR seasons are as follows:

- Groundwater pH, with one exception the May 2007 sampling event never exceeds 7.0 and always is less than source-surface water pH (Figure 18). Throughout the project groundwater pH has generally ranged between 6.2 and 6.8 and it may have been declining slightly over the past 2 seasons.
- Electrical conductivity, hardness, and TDS through the four seasons of the project generally are slightly lower in source water than in groundwater (Figure 19). This difference may to reflect the dissolution and transport of mineral salts from weathering and leaching in the vadose zone as recharge water (including but not limited to the H-W Site) infiltrates from the surface to groundwater. Elevated concentrations of each of these parameters early in several SAR seasons may reflect the initial leaching and transport to groundwater of low concentrations of mineral salts at the start of a SAR season. However, because these parameters in source water also appear to be changing at the same time as observed changes in groundwater, it is possible that groundwater changes are simply reflective of surface water variation elsewhere in the project area, and that H-W SAR has little to no impact on these parameters in groundwater.
- Nitrate-N concentrations never exceeded 1 mg/L in source water and rarely exceeded 2 mg/L in groundwater (Figure 20). If there is any nitrate-N impact of SAR on groundwater beneath the H-W Site likely it is due to flushing of nutrients in the vadose zone into groundwater and not due to the introduction of high nitrate-N water to the aquifer by SAR. Conversely, the groundwater nitrate-N concentrations may be unrelated to H-W SAR operations, and reflective of offsite conditions.
- Chloride concentrations, except in the 2006 SAR season, rarely exceed 5 mg/L in both source water and groundwater (Figure 21). The high initial chloride concentrations seen in the initial season (25 to 32 mg/L) may have reflected, at least in part, source water which was higher that season then in subsequent seasons. Conversely, laboratory error must be considered with such a large variation. Following the first SAR season, only slight differences were observed between source water and groundwater.

Soluable reactive phosphorus (SRP) concentrations throughout the 4 SAR seasons varied between approximately 0.05 and 0.35 mg/l, rarely exceeding 0.25 mg/l (Figure 22). Source water and groundwater concentrations generally varied in the same ways, suggesting a close relationship. However, since the upgradient well increased and decreased in concert with the source water and the down-gradient wells, much of the hydraulic continuity suggested by the data probably is independent of ASR at the H-W Site.

SOC detections at the H-W Site in the 4 SAR seasons were rare and inconsistent. Four SOC's have been detected at various times to-date, di(ethylhexyl) phthalate, diethyl phthalate, di-n-butyl phthalate, and malathion. All reported concentrations have been very low, generally at or near the method detection limit. SOC occurrence reported for the project area as follows:

- Di (ethylhexyl) phthalate was detected prior to the 2006 SAR season in 2 wells (HW-1 and HW-2) and source water, and during the 2008 SAR season in one well (HW-1). No trend is apparent.
- Diethyl phthalate was detected once prior to the 2006 SAR Season in two wells (HW-1 and HW-3) and source water. No trend is apparent.
- Di-n-butyl phthalate was detected twice in the 2007 SAR season. One detection
 was before the season in two wells (HW-2 and HW-3) and once during the
 season in the same two wells. No trend is apparent.
- Malathion was detected in all three wells once during the 2007 SAR season. It was not detected in source water.

The groundwater chemistry and surface-source water chemistry data collected to-date shows a close relationship between surface water and groundwater at the H-W Site and it also is strongly suggestive that H-W SAR does not degrade groundwater quality. The lack of consistent, discernable up-gradient to down-gradient groundwater quality changes suggests SAR had little impact on groundwater quality. In addition, increase and decreases in source water quality that corresponded to similar shifts in groundwater quality in the up-gradient and both down-gradient wells suggest changes in water quality generally are occurring independently of anything being done at the H-W Site. Given the widespread occurrence of unlined ditches throughout the H-W Site area, this should be expected.

8.0 SUMMARY AND RECOMMENDATIONS

8.1 Summary

SAR has been conducted seasonally at the H-W Site in each of the previous four winterspring seasons. Suring these seasonal recharge events, SAR did successfully provide recharge to the underlying, shallow alluvial aquifer system. Furthermore, H-W SAR activities did not result in degradation of local groundwater quality.

H-W Site SAR has been done using passive infiltration focusing simply on letting water delivered to the site spread out across it, sink into the ground, and infiltrate through the vadose zone to the underlying alluvial aquifer system. The only site improvement done for the project focused on the water delivery system (ditches) through which water reaches the H-W Site. Ditches, trenches, and other structures that might have facilitated infiltration of water into the ground were not dug at the H-W Site in any of the four SAR seasons.

Water volumes delivered to the H-W Site were estimated from flow measurements collected in the Branch Ditch at two locations, one where water was diverted from Wells Ditch into it and one where it enters the H-W Site. In the first SAR season, in March and April 2006, the two flow measurement points were rectangular weirs. In the subsequent three SAR seasons E-Z Flow[®] portable ramp flumes were installed at the upper end and lower end of the Branch Ditch. For all four SAR seasons flow through the measurement structures was calculated from stage (water depth) data recorded by a pressure transducer-datalogger. Water volumes estimated to have been diverted to the H-W Site in each of the four SAR seasons are as follows:

82 acre-feet diverted from Wells Ditch, with 68 acre-feet delivered to the H-W
 Site in the 40 day long 2006 SAR season.

- 140 acre-feet diverted from Wells Ditch, with 106 acre-feet delivered to the H-W
 Site in the 116 day long 2007 SAR season.
- 16 acre-feet diverted from Wells Ditch, with 15 acre-feet delivered to the H-W
 Site in the 14 day long 2008 SAR season.
- 179 acre-feet diverted from Wells Ditch, with 122 acre-feet delivered to the H-W
 Site in the 72 day long 2009 SAR season.

Water level data recorded by pressure transducer-dataloggers in the three on-site monitoring wells indicates the shallow alluvial aquifer system responded rapidly to the delivery of water to the H-W Site. Within 24 hours of the start of SAR, or an increase in delivery rate of SAR water, water levels in the monitoring wells rose. The aquifer response is significantly quicker than that predicted by a large-scale infiltration rate evaluation conducted in the 2009 SAR season. This suggests infiltration through the vadose zone at the H-W Site only occurs beneath a small portion of the wetted surface area.

The water level data collected for the project also shows that the shallow aquifer in the vicinity of the H-W Site responds to factors other than those related to H-W Site SAR operations. In some instances, off-season rises and falls in water level were at least as great, and sustained, as those resulting from SAR operations. Although these off-site influences on water level were not directly evaluated, likely phenomena influencing alluvial aquifer water level other than H-W SAR include: (1) ditch operations, especially in unlined, leaky ditches, (2) well pumping, and (3) seasonal precipitation and run-off variation.

During the 2006, 2007, and 2008 SAR seasons, water level data was collected manually from a number of off-site wells. This data indicated that the water table mound generated by SAR propagated up to several miles away from the H-W Site within 1 to 2 weeks of the start of the SAR season. This data also showed a corresponding rapid decrease in the mound at the conclusion of the SAR season. It is important to keep in mind that this data does not record movement of water, but rather the pressure wave generated by SAR water reaching the water table. Because aquifer hydraulic data was not collected during the project and a lack of funding to build and test an appropriate

sized well, only non-site specific data is available upon which to calculate likely groundwater velocities and residence time for SAR water in the vicinity of the H-W Site.

Source water and groundwater quality samples were collected and analyzed for field parameters, basic water quality constituents, and SOC's periodically before, during, and after each SAR season. The data collected to-date indicates that no discernable impact to local groundwater quality as a resulted from H-W SAR. This data does however show that surface water and groundwater in the project area are very similar geochemically and that they display a high degree of hydraulic connection. Given that connection, and the water quality data collected to-date, any impact on groundwater quality by surface water occurs regardless of the presence or absence of H-W SAR operations.

As stated in this report, and as has been previously described in the three previous seasonal reports (Kennedy/Jenks 2006; GSI 2007, 2008), the main issues encountered when operating the H-W Site were related to the very low gradient ditches, high silt and organic debris load in these ditches, and the fact that there is no single owner for the Wells Ditch system. The low gradient Branch Ditch made it very difficult to build a flow measurement weir or install a portable ramp flume with a sufficient head drop to result in stage measurements that could be used to calculate flow volume. This may account for some of the differences in water volume estimated for the upper and lower end of the Branch Ditch. The low gradient ditch system, when coupled with low water levels, lead to increased fouling of the fish screen placed at the Wells Ditch diversion weir. This screen, which was entirely passive, as no power was available to where it needed to be placed, relied on water flowing past it on Wells Ditch to remove from the screen any fine sediment particles and larger suspended debris. The flows in Wells Ditch commonly experienced in December, January, and February simply were to low to accomplish this. It wasn't until the start of the irrigation season that Wells Ditch flow increased enough to reduce plugging impacts.

Finally, with respect to operations and ownership, the lack of a single ditch owner/operator (either individual or corporate) hindered both operations and permitting. The fact that WWRID, the Limited License holder, does not own the H-W Site and ditches feeding it (they lay outside of the boundaries of the WWRID service area) meant they had no control of the site. This situation also limited the availability of up-steam flows in the ELWW which are regulated for fish habitat benefit and WWRID operations

26

within the district service area. Consequently, WWRID could not invest resources into operations, maintenance, and upgrades. The ditch system and H-W Site could only be operated when local stakeholder, primarily Mr. Tom Page – the local proponent, had the time and ability to operate gates, headboards, and other related equipment.

8.2 Conclusions and Recommendations

The H-W Site is a good example of how SAR can be made to work on a small or local scale. The data collected during the four seasons of SAR operations at the H-W Site indicate that the project did directly contribute to groundwater recharge, but just as importantly so did the ditches operating in the project area when they contain water. Given the aquifer recharge potential of the H-W Site and the additional water provide by leakage from the ditches that carry water to it is recommended that aquifer recharge activities at the H-W Site and/or other sites, including ditches that are channelized streams (such as East and West Little Walla Walla), continue.

This conclusion is accompanied by the following recommendations:

- A single operating entity, either public, corporate, or private should be identified for each site so that there is an entity to hold an operating permit and has jurisdiction, or at least an operational role, over the site and the nearest ditches.
- If more than one site is operated, including selected reaches of ditches, then a streamlined water quality monitoring system should be implemented for all of them in combination. Given the high degree of aquifer-surface water connection it is recommended that monitoring focus only on field and basic parameters, primarily to confirm general water quality trends. Where very leaky ditches convey water to the SAR sites, tracking SAR operations impacts on groundwater quality appears to be a redundant activity.
- Monitoring of groundwater levels should continue, but as part of larger scale, regional WWBWC effort.

- Given the existing ditch system at H-W Site and in adjacent areas, will limit the size of any SAR site, multiple sites should be found and operated together to increase the potential recharge of the alluvial aquifer system.
- Integrate any future SAR in the H-W area into a Basin-wide effort, both to minimize cost by getting an economy of scale on operations and monitoring and so that it is integrated with and compliments other recharge efforts by not competing for source-surface water and generating overlapping aquifer responses.
- Facilitate the operating of winter water rights to simply increase recharge
 potential when water is available, recharging the shallow alluvial aquifer in time of
 plenty so it might be available as base flow for springs and streams in times of
 need.
- Use the H-W Site, and similar sites, to mitigate for reduced groundwater recharge resulting from piping and lining of former stream canals, channelization of those stream reaches, and the loss of recharge through the reduction in flood plain areas and wetlands dewatering.

9.0 REFERENCES CITED

GSI, 2007, Project Completion Report for Shallow Aquifer Recharge Testing at the Hall-Wentland Site, Umatilla County, Oregon and Walla Walla County, Washington.
Consultants report prepared for Walla Walla County Watershed Planning Department, 14 Pages, 2 Tables, 14 Figures, 3 Appendices.

GSI, 2008, Annual Report for the Spring 2008 Recharge Season, Hall-Wentland Shallow Aquifer Recharge Site, Umatilla County, Oregon, and Walla Walla County, Washington. Consultants report prepared for Walla Walla County Watershed Council and Walla Walla River Irrigation District, 14 Pages, 2 Tables, 14 Figures, 2 Appendices.

Kennedy/Jenks, 2005, Proposed SAR Monitoring and Test Plan, Hall-Wentland Site, Umatilla County, Oregon, Revision 3. Consultants report prepared for HDR/EES, Nov. 2005, 18 Pages, 1 Table, 7 Figures.
Kennedy/Jenks, 2006, Results of the First Season of Shallow Aquifer Recharge Testing at the Hall-Wentland Site, Umatilla County, Oregon and Walla Walla County, Washington. Consultants report prepared for HDR, Inc., 23 June 2006, 35 Pages, 5 Tables, 34 Figures, 4 Appendices.

Hall- Wentland Infiltration Testing

				Estimated	Average	Average	
		Flow in		Total	Downward	Infiltration	
		On-site	Flow in On-	Wetted	Vertical	Rate	
		Flume	site Flume	Area	Velocity	(gal./day/	
Date	Time	(cfs)	(gpd)	(sq. ft.)	(ft./day)	sq. ft.)	Weather Conditions
2/26/2009	14:00	1.08	698022.24	12992	7.18	53.73	50° windy, cloudy
3/3/2009	13:15	1.33	859601.47	14724	7.80	58.38	60° parly cloudy
3/13/2009	14:02	0.97	626927.39	15652	5.35	40.05	60° sunny
3/20/2009	12:34	1.37	885454.14	19184	6.17	46.16	65° sunny
3/26/2009	15:32	1.46	943622.66	23212	5.43	40.65	60° sunny

Table 1A. Assuming flow onto site constant for subsequent 24 hours.

				Estimated	Average	Average	
		Flow in		Total	Downward	Infiltration	
		On-site	Flow in On-	Wetted	Vertical	Rate	
		Flume	site Flume	Area	Velocity	(gal./day/	
Date	Time	(cfs)	(gpd)	(sq. ft.)	(ft./day)	sq. ft.)	Weather Conditions
2/26/2009	14:00	1.24	798683.00	12992	8.22	61.47	50° windy, cloudy
3/3/2009	13:15	0.95	614554.00	14724	5.58	41.74	60° parly cloudy
3/13/2009	14:02	0.70	453707.00	15652	3.88	28.99	60° sunny
3/20/2009	12:34	1.12	721662.00	19184	5.03	37.62	65° sunny
3/26/2009	15:32	1.30	838003.00	23212	4.83	36.10	60° sunny

Table 1B. Calculating average flow onto site based on previous 24 hours.

				Estimated	Average	Average	
		Flow in		Total	Downward	Infiltration	
		On-site	Flow in On-	Wetted	Vertical	Rate	
		Flume	site Flume	Area	Velocity	(gal./day/	
Date	Time	(cfs)	(gpd)	(sq. ft.)	(ft./day)	sq. ft.)	Weather Conditions
2/26/2009	14:00	0.91	589173.00	12992	6.06	45.35	50° windy, cloudy
3/3/2009	13:15	0.90	584840.00	14724	5.31	39.72	60° parly cloudy
3/13/2009	14:02	0.78	502179.00	15652	4.29	32.08	60° sunny
3/20/2009	12:34	1.22	789883.00	19184	5.50	41.17	65° sunny
3/26/2009	15:32	1.25	808208.00	23212	4.65	34.82	60° sunny

Table 1C. Calcuting average flow onto site based on previous 120 hours.

Table 1. Results of the infiltration tests.

					Electrical										Soluble Reactive			Total	
Sample					Conductivity	Turbidity	NO3-N		NO ₂ -N	Hardness	TDS				Phosphorou	S	COD	Coliform	E-Coli
ID	Date	Lab No.	рН	Temp. C	(mS/cm)	(NTU)	(mg/L)		(mg/L)	(mg/L)	(mg/L)		CI (mg/L)		(mg/L)		(mg/L)	(per 100ml)	(per 100ml)
Surface	2/2/2006	80603	7.29	10.0	1027	14.40	0.206		0.0300	50.42	100.0		18.700		0.197		14	present	present
Surface	2/22/2006	80884	7.21	9.5	1044	10.80	0.620		NR	48.90	108.0		6.200		0.146		23	present	present
Surface	3/3/2006	81009	6.94	9.7	1144	26.50	0.940	<	0.0023	NR	160.0	<	0.297	<	0.043		820	present	present
Surface	4/12/2006	81717	7.29	14.9	1300	16.10	0.610	<	0.0023	51.50	66.0		6.000		0.100		14	present	present
Surface	10/31/2006	85494	7.33	8.7	1370	27.40	0.870	<	0.0023	53.60	92.0		2.190		0.150	<	8	NR	present
Surface	12/27/2006	86255	7.42	6.8	1530	8.36	1.130	<	0.0023	89.80	92.0	<	0.297		0.250	<	8	absent	NR
Surface	4/11/2007	87722	8.89	14.9	1100	5.68	0.290	<	0.0023	55.00	92.5		2.500		0.060		15	present	present
Surface	5/7/2007	88149	8.59	15.9	1100	6.51	0.600	<	0.0023	38.60	50.0		4.500		0.090	<	8	present	present
Surface	2/13/2008	4105	7.64	NR	1440	5.89	0.780		NR	58.80	115.0		2.000		0.310		17	NR	NR
Surface	4/8/2008	10001	7.74	NR	1150	9.90	0.380		NR	39.30	85.0		1.500		0.180	<	8	NR	NR
Surface	2/12/2009	4483	7.27	NR	1480	38.20	0.900		NR	56.10	97.0		2.300		0.240		14	present	absent
Surface	4/23/2009	11910	7.59	NR	1180	17.00	0.600		NR	44.80	83.0		1.800		0.160		ND	present	present

Sample ID	Date	Lab No.	рН	Temp. C	Electrical Conductivity (mS/cm)	Turbidity (NTU)	NO₃-N (mg/L)		NO₂-N (mg/L)	Hardness (mg/L)	TDS (mg/L)	CI (mg/L)	Soluble Reactive Phosphorous (mg/L)	6	COD (mg/L)	Total Coliform (per 100ml)	E-Coli (per 100ml)
HW-1	2/2/2006	80600	6.67	10.3	1120	0.10	0.566		0.0200	57.75	110.0	25.000		0.224	<	8	absent	absent
HW-1	2/22/2006	80881	6.48	7.0	1000	0.34	1.690			55.00	98.0	9.400		0.139		9	present	present
HW-1	3/2/2006	81006	6.59	12.2	1178	0.15	0.680		0.0500	58.90	170.0	5.000		0.100		404	absent	absent
HW-1	3/9/2006	81156	6.62	11.3	1142	0.13	1.210	<	0.0023	62.00	112.0	5.000	<	0.043	<	8	absent	absent
HW-1	4/12/2006	81714	6.39	9.8	1400	0.12	1.420	<	0.0023	60.10	72.0	5.000		0.170	<	8	present	present
HW-1	5/10/2006	82240	6.55	12.0	1413	0.10	0.990	<	0.0020	59.30	116.0	< 0.200		0.150	<	10	absent	absent
HW-1	10/3/2006	85052	6.43	12.8	1440	0.50	0.750	<	0.0023	62.80	136.0	< 0.297		0.110	<	8	absent	NR
HW-1	10/31/2006	85491	6.84	12.2	1560	0.23	0.910	<	0.0023	64.40	108.0	2.100		0.130	<	8	NR	absent
HW-1	12/27/2006	86252	6.57	12.1	1590	0.13	0.710	<	0.0023	90.00	108.0	< 0.297		0.120	<	8	absent	NR
HW-1	4/11/2007	87719	6.90	12.9	1540	0.12	0.800	<	0.0023	83.30	115.0	0.500		0.090	<	8	absent	absent
HW-1	5/7/2007	88146	7.32	13.3	1520	0.89	1.140	<	0.0023	56.70	76.7	5.000		0.130	<	8	present	absent
HW-1	1/23/2008	2120	NR	NR	1810	NR	2.000		NR	67.20	126.0	3.200		NR	<	8	NR	NR
HW-1	2/13/2008	4102	6.67	NR	1750	0.98	1.820		NR	69.20	137.0	2.800		0.310	<	8	NR	NR
HW-1	4/8/2008	9998	6.51	NR	1640	1.98	1.160		NR	50.20	77.0	2.500		0.220	<	8	NR	NR
HW-1	5/27/2008	15131	6.75	NR	1630	0.56	1.030		NR	61.20	122.0	2.400		0.240	<	8	NR	NR
HW-1	12/16/2008	37232	6.91	NR	1490	4.32	2.110		NR	53.70	125.0	2.200		0.150		ND	absent	absent
HW-1	2/12/2009	4480	6.45	NR	1580	0.98	1.710		NR	57.60	105.0	3.000		0.230		ND	present	present
HW-1	4/23/2009	11908	6.34	NR	1420	2.02	1.150		NR	56.80	96.0	2.700		0.210		ND	present	absent
HW-1	5/28/2009	16101	6.43	NR	1670	0.30	1.550		NR	66.55	116.0	2.900		0.260		ND	present	absent

Table 2. Field and basic water quality results for the 2006, 2007, 2008, and 2009 SAR season.NR = Not Reported; ND = Not Detectable

Sample ID	Date	Lab No.	рН	Temp. C	Electrical Conductivity (mS/cm)	Turbidity (NTU)	NO₃-N (mg/L)		NO₂-N (mg/L)	Hardness (mg/L)	TDS (mg/L)	CI (mg/L)	Soluble Reactive Phosphorous (mg/L)	s	COD (mg/L)	Total Coliform (per 100ml)	E-Coli (per 100ml)
HW-2	2/2/2006	80601	6.60	14.0	1434	6.82	0.390		0.0210	72.41	126.0	25.000	0.208	<	8	present	absent
HW-2	2/22/2006	80882	6.60	13.1	1441	1.23	0.930		NR	77.00	128.0	7.800	0.114		19	present	absent
HW-2	3/3/2006	81007	6.74	12.8	1506	0.02	0.720		0.0500	77.50	166.0	5.000	0.100		743	absent	absent
HW-2	3/9/2006	81157	6.78	12.5	1470	0.71	0.950	<	0.0023	82.00	126.0	< 0.297	< 0.043	<	8	absent	absent
HW-2	4/12/2006	81715	6.30	13.4	1400	12.50	1.690	<	0.0023	63.00	82.0	5.000	0.120	<	8	present	present
HW-2	5/10/2006	82241	6.65	13.4	1708	4.53	1.710	<	0.0020	71.90	132.0	< 0.200	0.130	<	10	present	present
HW-2	10/3/2006	85053	5.95	18.0	1450	0.61	0.470	<	0.0023	63.10	130.0	< 0.297	0.090	<	8	absent	NR
HW-2	10/31/2006	85492	6.24	15.1	1570	2.23	0.740	<	0.0023	62.90	114.0	1.900	0.200	<	8	NR	absent
HW-2	12/27/2006	86253	6.79	14.4	1370	4.12	0.780	<	0.0023	87.20	90.0	0.600	0.130	<	8	present	
HW-2	4/11/2007	87720	6.96	11.3	1370	0.83	0.810	<	0.0023	69.00	108.0	2.700	0.050	<	8	present	absent
HW-2	5/7/2007	88147	7.02	10.8	1360	1.67	0.850	<	0.0023	48.70	53.3	1.500	0.120	<	8	present	present
HW-2	1/23/2008	2121	6.51	NR	1800	5.43	0.940		NR	67.70	125.0	2.200	0.340	<	8	NR	NR
HW-2	2/13/2008	4103	6.59	NR	1780	0.88	3.460		NR	72.90	137.0	5.000	0.340	<	8	NR	NR
HW-2	4/8/2008	9999	6.44	NR	1820	11.50	0.800		NR	61.90	131.0	2.100	0.260	<	8	NR	NR
HW-2	5/27/2008	15132	6.61	NR	1350	1.24	0.840		NR	48.60	112.0	1.600	0.250		12	NR	NR
HW-2	10/28/2008	32784	6.38	NR	1760	6.00	0.850		NR	72.10	132.0	3.200	0.250		ND	present	absent
HW-2	12/16/2008	37234	6.54	NR	1860	1.34	0.890		NR	74.00	149.0	2.400	0.190		ND	present	absent
HW-2	2/12/2009	4481	6.49	NR	1600	20.30	1.940		NR	54.70	105.0	3.800	0.200		ND	present	absent
HW-2	4/23/2009	11909	6.30	NR	1620	1.75	1.920		NR	61.70	110.0	3.700	0.170		ND	present	absent
HW-2	5/28/2009	16102	6.36	NR	1750	1.56	1.420		NR	70.40	113.0	2.630	0.240		ND	present	present

															Soluble				
					Electrical										Reactive			Total	
Sample					Conductivity	Turbidity	NO ₃ -N		NO ₂ -N	Hardness	TDS				Phosphorou	s	COD	Coliform	E-Coli
ID	Date	Lab No.	рН	Temp. C	(mS/cm)	(NTU)	(mg/L)		(mg/L)	(mg/L)	(mg/L)		CI (mg/L)		(mg/L)		(mg/L)	(per 100ml)	(per 100ml)
HW-3	2/2/2006	80602	6.53	12.4	1193	0.16	0.391		0.0170	60.38	108.0		31.200		0.083	<	8	absent	absent
HW-3	2/22/2006	80883	6.64	12.3	1181	0.14	0.900		NR	62.70	106.0		15.600		0.107		14	absent	absent
HW-3	3/3/2006	81008	6.48	13.0	1223	0.12	0.700	<	0.0023	60.80	158.0	<	0.297	<	0.043		615	absent	absent
HW-3	3/9/2006	81158	6.86	12.4	1178	0.20	0.920	<	0.0023	64.00	96.0		8.000	<	0.043		13	absent	absent
HW-3	4/12/2006	81716	6.52	13.2	1500	0.05	1.020	<	0.0023	62.60	88.0		5.000		0.100	<	8	absent	absent
HW-3	5/10/2006	82242	6.45	13.2	1447	16.90	1.020	<	0.0020	62.20	144.0	<	0.297		0.160	<	10	present	present
HW-3	10/3/2006	85054	6.32	13.2	1430	0.20	0.700	<	0.0023	67.90	122.0	<	0.297		0.080	<	8	absent	NR
HW-3	10/31/2006	85493	6.76	12.7	1430	3.17	0.760	<	0.0023	59.40	98.0	<	0.297		0.090	<	8	NR	absent
HW-3	12/27/2006	86254	6.8	12.5	1470	2.44	1.120	<	0.0023	98.70	94.0		2.800		0.060	<	8	absent	NR
HW-3	4/11/2007	87721	6.96	13.1	1490	0.27	0.870	<	0.0023	78.90	105.0		3.000	<	0.043	<	8	absent	absent
HW-3	5/7/2007	88148	7.07	13.2	1480	0.11	1.160	<	0.0023	56.80	76.7		2.000		0.070	<	8	absent	absent
HW-3	1/23/2008	2122	6.88	NR	1580	29.00	1.210		NR	64.20	113.0		2.600		0.290		11	NR	NR
HW-3	2/13/2008	4104	6.64	NR	1610	6.94	3.610		NR	63.20	130.0		5.100		0.290	<	8	NR	NR
HW-3	4/8/2008	10000	6.5	NR	1570	0.43	1.120		NR	64.40	112.0		1.500		0.210	<	8	NR	NR
HW-3	5/27/2008	15133	6.74	NR	1520	8.45	1.110		NR	61.80	120.0		2.300		0.230		10	NR	NR
HW-3	10/28/2008	32783	6.43	NR	1630	0.40	1.420		NR	64.30	127.0		2.300		0.200		ND	absent	absent
HW-3	12/16/2008	37235	6.58	NR	1690	0.30	1.620		NR	64.40	133.0		2.400		0.160		ND	absent	absent
HW-3	2/12/2009	4482	6.58	NR	1940	4.53	2.970		NR	71.80	125.0		2.800		0.200		ND	present	absent
HW-3	3/12/2009	7341	6.51	NR	1670	4.70	1.950		NR	68.40	118.0		2.900		ND		ND	present	absent
HW-3	4/23/2009	11907	6.31	NR	1640	2.44	1.960		NR	63.00	122.0		2.800		0.170		ND	absent	absent
HW-3	5/28/2009	16103	6.39	NR	1640	2.74	1.540		NR	65.80	112.0		2.600		0.240		ND	absent	absent

Table 2. (continued)

Date	2/2/2006	2/2/2006	2/2/2006	2/2/2006
Well ID Chemical	HW-1	HW-2	HW-3	Surface
Carban	nates in Drinl	king water		
Carbofuran	ND	ND	ND	ND
Oxymal	ND	ND	ND	ND
Aldicarb	ND	ND	ND	ND
Aldicarb sulfone	ND	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND	ND
Methomyl	ND ND	ND ND	ND ND	ND ND
Propoxur (Baygon)	ND	ND	ND	ND
Methiocarb	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Alachior	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND
Chlordane Technical	ND	ND	ND	ND
Di(ethylhexyl)-Adipate	3.7	1.6	ND	4.1
Heptachlor	ND	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	ND	ND
Hexachlorocyclo-Pentadiene	ND ND	ND	ND	ND
Simazine	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Butachlor	ND	ND	ND	ND ND
Metolachlor	ND ND	ND	ND	ND
Metribuzin	ND	ND	ND	ND
Propachlor	ND	ND	ND	ND
Bromacil	ND	ND	ND	ND ND
Terbacil	ND	ND	ND	ND
Diazinon	ND	ND	ND	ND
EPTC	ND	ND	ND	ND
4,4-DDD	ND	ND	ND	ND ND
4,4-DDE 4.4-DDT	ND	ND	ND	ND
Cyanazine	ND	ND	ND	ND
Malathion	ND	ND	ND	ND
I muralin Nanthalene	ND	ND	ND	
Fluorene	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
Benz(A)anthracene	ND	ND	ND	ND
Benzo(B)fluoranthene	ND	ND	ND	ND
Benzo(G,H,I)peryene	ND	ND	ND	ND
Chrysene	ND	ND	ND	
Dibenzo(A,H)anthracene	ND	ND	ND	ND
Fluoranthene	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	ND	ND	ND	ND ND
Pyrene	ND	ND	ND	ND
Benzyl Butyl Phthalate	ND	ND	ND	ND
Di-N-Butyl Phthalate	ND	ND	ND	ND
Direthyl Phthalate	1.1 ND	ND ND	1.5 ND	2.2 ND
Toxaphene	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Arocior 1242 Aroclor 1248	ND ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
Aroclor 1016	ND ideo in Drink	ND Ing Water	ND	ND
2,4-D	ND	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Dalapon	ND	ND	ND	ND
Picloram	ND	ND	ND	ND
Dicamba	ND	ND	ND	ND
2,4 DB	ND	ND	ND	ND
2,4,5 I Bentazon				
Dichlorprop	ND	ND	ND	ND
Actiflorfin	ND	ND	ND	ND
Dacthal (DCPA)	ND	ND	ND	ND
Velpar (hexazinone)	ND ND	ND	ND	ND
Bronate (bromoxynil)				
Gramoxone (paraguat)				

Table 3. SOC results for the H-W Site. ND = Not Detectable

Date	3/3/2006	3/3/2006	3/3/2006	3/3/2006
Well ID	HW-1	HW-2	HW-3	Surface
Cnemical	mates in Drink	ing water		
Carbofuran	ND	ND	ND	ND
Oxymal	ND	ND	ND	ND
3-Hydroxycabofuran	ND	ND	ND	ND
Aldicarb sulfone	ND	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND	ND
Carbaryl	ND	ND	ND	ND
Methomyl Propozur (Baygon)	ND	ND	ND	ND
Methiocarb	ND	ND	ND	ND
Synthe	tic Organic C	ompounds		
Endrin	ND	ND	ND	ND
Lindane (BHC-Gamma)	ND			ND
Alachlor	ND	ND	ND	ND
Atrazine	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND
Di(ethylbexyl)-Adipate	ND		ND	ND
Di(ethylhexyl)-phthalate	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	ND	ND
Hexachlorocyclo-Pentadiene	ND	ND	ND	ND
Simazine	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Butachlor	ND	ND	ND	ND
Dieldrin	ND	ND		ND
Metribuzin	ND	ND	ND	ND
Propachlor	ND	ND	ND	ND
Bromacil	ND	ND	ND	ND
Prometon	ND	ND	ND	ND
Diazinon	ND	ND	ND	ND
EPTC	ND	ND	ND	ND
4,4-DDD	ND	ND	ND	ND
4,4-DDE	ND	ND	ND	ND
4,4-DDT Cyapazine	ND	ND	ND	ND
Malathion	ND	ND	ND	ND
Trifluralin	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
Anthracene	ND	ND	ND	ND
Benz(A)anthracene	ND	ND	ND	ND
Benzo(B)fluoranthene	ND	ND	ND	ND
Benzo(K)fluoranthene	ND	ND	ND	ND
Chrysene	ND	ND	ND	ND
Dibenzo(A,H)anthracene	ND	ND	ND	ND
Fluoranthene	ND	ND	ND	ND
Phenanthrene	טא	טא	שא	שא
Pyrene	ND	ND	ND	ND
Benzyl Butyl Phthalate	ND	ND	ND	ND
Di-N-Butyl Phthalate	ND	ND	ND	ND
Directory Phthalate				
Toxaphene	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
Aroclor 1016	ND	ND	ND	ND
Herbio	cides in Drink	ing Water		
2,4-U 2,4,5-TP (Silvex)	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Dalapon	ND	ND	ND	ND
Dinoseb	ND	ND	ND	ND
Dicamba				
2,4 DB	שא	NU	NU	NU
2,4,5 T				
Bentazon				
Dichlorprop				
Dacthal (DCPA)				
3,5-Dichlorobenzoic Acid				
Velpar (hexazinone)	ND	ND	ND	ND
Bronate (bromoxynil)	ND	ND	ND	ND
Gramoxone (paraquat)	ND	ND	ND	ND

Table 3. Continued

Well D HV-1 HV-2 HV-3 Surface Carbofuran ND ND ND ND ND ND 3-Hydroxycabofuran ND ND ND ND ND ND Adicarb sulfoxide ND ND ND ND ND Adicarb sulfoxide ND ND ND ND ND Carbaryl ND ND ND ND ND Methoryl ND ND ND ND ND Adicarb sulfoxide ND ND ND ND ND Adicarb sulfoxide ND ND ND ND ND Adicarb sulfoxide ND ND ND ND ND ND ND ND <td< th=""><th>Date</th><th>10/31/2006</th><th>10/31/2006</th><th>10/31/2006</th><th>10/31/2006</th></td<>	Date	10/31/2006	10/31/2006	10/31/2006	10/31/2006
Carbotran ND ND ND ND Carbotran ND ND ND ND ND 34-tydroxycabotran ND ND ND ND ND Addicarb suffore ND ND ND ND ND Addicarb suffore ND ND ND ND ND Carbaryl ND ND ND ND ND ND Mitherit ND ND ND ND ND ND Mitherit ND ND ND ND ND ND Endrin ND ND ND ND ND ND ND Address ND	Well ID Chemical	HW-1	HW-2	HW-3	Surface
Carboluran ND ND ND ND 3-Hydrosycaboluran ND ND ND ND Adicarb sulfoxide ND ND ND ND Methory (Baygon) ND ND ND ND Methory (Carbay) ND ND ND ND Methory (Carbay) ND ND ND ND Adicarbay ND ND ND ND ND Adicarbay ND ND ND ND ND ND Adicarbay (Carbay) ND ND <t< td=""><td>Carbar</td><td>nates in Drink</td><td>ing water</td><td></td><td></td></t<>	Carbar	nates in Drink	ing water		
Oxymal ND ND ND ND Aldicarb ND ND ND ND Aldicarb sulfoxide ND ND ND ND Adicarb sulfoxide ND ND ND ND Carbayl ND ND ND ND Propoxut (Baygon) ND ND ND ND Propoxut (Baygon) ND ND ND ND Methoxychlor ND ND ND ND Adachior ND ND ND ND ND Artazine ND ND ND ND ND Artazine ND ND ND ND ND Chordane Technical ND ND ND ND ND Artazine ND ND ND ND ND ND Diedriyhexyl-printalate ND ND ND ND ND ND Diedrichor ND ND	Carbofuran	ND	ND	ND	ND
3-Hydroxycaborulan ND ND ND ND Aldicarb sulforie ND ND ND ND Aldicarb sulforie ND ND ND ND Carbaryi ND ND ND ND Methomyi ND ND ND ND Methomyi ND ND ND ND Synthetic Organic Compounds Edrain ND ND ND Endrin ND ND ND ND ND Atachior ND ND ND ND ND Atachior ND ND ND ND ND Atachior ND ND ND ND ND Chiorane Technical ND ND ND ND ND Chiorane Technical ND ND ND ND ND Atachior ND ND ND ND ND ND Atachior ND <t< td=""><td>Oxymal</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Oxymal	ND	ND	ND	ND
Adicate sufforde ND ND ND ND Adicate sufforde ND ND ND ND ND Metinom/ ND ND ND ND ND Propoxur (Bargon) ND ND ND ND ND Methicanb ND ND ND ND ND Endrin ND ND ND ND ND Lindane (BHC-Gamma) ND ND ND ND ND Adicator ND	Aldicarb	ND	ND	ND	
Adicarb sulfoxide ND ND ND ND Grabayl ND ND ND ND Propozur (Baygon) ND ND ND ND Synthetic Organic Compounds Endrin ND ND ND Lindsare (Br-Gamma) ND ND ND ND Attrazine ND ND ND ND Attrazine ND ND ND ND Benzo(a)pyrene ND ND ND ND Didertyfnexyf)-Adipate ND ND ND ND Heptachfor ND ND ND ND ND Heptachfor ND ND ND ND ND ND Heptachfor ND ND<	Aldicarb sulfone	ND	ND	ND	ND
Carbaryl ND ND ND ND Propoxur (Baygon) ND ND ND ND Synthetic Organic Compounds Endrin ND ND ND ND Endrin ND ND ND ND ND ND Methoxychlor ND ND ND ND ND ND Atachlor ND ND ND ND ND ND Atachlor ND ND ND ND ND ND Otiordam Technical ND ND ND ND ND ND Di(ethythexyt)-Adigate ND ND ND ND ND ND Heptachlor Eposide A&B ND ND ND ND ND ND Heptachlor Cyclo-Pentadene ND <	Aldicarb sulfoxide	ND	ND	ND	ND
Proposur (Baygon) ND ND ND ND ND Methiccarb ND ND ND ND ND Endrin ND ND ND ND ND Lindare (BHC-Garma) ND ND ND ND ND Methoxychlor ND ND ND ND ND Atachlor ND ND ND ND ND Atachlor ND ND ND ND ND Difethylharyl)-adjate ND ND ND ND ND Hexachlorobenzene ND ND ND ND ND Hexachlorobenzene ND ND ND ND ND Addrin ND ND ND ND ND ND Addrin ND ND ND ND ND ND Hexachlorocydio-Pentadene ND ND ND ND ND ND Addrin <td>Carbaryl</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Carbaryl	ND	ND	ND	ND
Image: Note of the image of the im	Propoxur (Baygon)	ND	ND	ND	ND
Synthetic Organic Compounds Endrin ND ND ND ND ND Lindane (BHC-Gamma) ND ND ND ND ND Alachlor ND ND ND ND ND Alachlor ND ND ND ND ND Alachlor ND ND ND ND ND Chordane Technical ND ND ND ND ND Didethylkeyl)-Adjaela ND ND ND ND ND Hetachlor Epoxide A&B ND ND ND ND ND Hetachlor Epoxide A&B ND ND ND ND ND Jatirin ND ND ND ND	Methiocarb	ND	ND	ND	ND
Lindane (Bdiff. ND ND ND ND Metroxychlor ND ND ND ND Matchlor ND ND ND ND Atrazine ND ND ND ND Benzo(a)pyrene ND ND ND ND Difethythexyl)-phdjate ND ND ND ND Difethythexyl)-phdjate ND ND ND ND Hexachiorocydo-Pentadene ND ND ND ND Metolachior ND ND ND ND Metolachior ND ND ND ND N	Synthe	tic Organic Co	ompounds	ND	ND
Methogenitor ND ND ND ND ND Alachior ND ND ND ND ND Atrazine ND ND ND ND ND Denzo(a)pyrene ND ND ND ND ND Di(ethylhexyl)-Atdipate ND ND ND ND ND Di(ethylhexyl)-Atdipate ND ND ND ND ND Heptachlor ND ND ND ND ND ND Heptachloryclo-Pentademe ND ND ND ND ND ND Hexachlorocyclo-Pentademe ND ND ND ND ND ND Metolachlor ND	Lindane (BHC-Gamma)	ND	ND	ND	ND
Alachlor ND ND ND ND Arazine ND ND ND ND Chordma Technical ND ND ND ND Didethyfhexyl)-Adipate ND ND ND ND Didethyfhexyl)-phinalate ND ND ND ND Hepachlor ND ND ND ND ND Hetachlor Epoxide A&B ND ND ND ND ND Hexachlorocyclo-Pentadiene ND ND ND ND ND Jutachlor ND ND ND ND ND ND Jutachlor ND ND ND ND ND ND Metriduzin ND ND	Methoxychlor	ND	ND	ND	ND
Atrazne ND ND ND ND Benzo(a)pyrene ND ND ND ND Ditethylhexyl)-Applate ND ND ND ND Ditethylhexyl)-Applate ND ND ND ND Heptachlor ND ND ND ND Heptachlor Epoxide A&B ND ND ND ND Hexachlorcyclo-Pertadiene ND ND ND ND Hexachlorcyclo-Pertadiene ND ND ND ND Aldrin ND ND ND ND ND Betachlor ND ND ND ND ND Propachlor ND ND ND ND ND ND Prometon ND <	Alachlor	ND	ND	ND	ND
Chiordane Technical ND ND ND ND Di(ettry/lexyl)-phinalate ND ND ND ND Heptachlor ND ND ND ND Heptachlor ND ND ND ND Heptachlor Epoxide A&B ND ND ND ND Hestachlorocyclo-Pentadiene ND ND ND ND Hexachlorocyclo-Pentadiene ND ND ND ND Batachlor ND ND ND ND ND Metribuzin ND ND ND ND ND Metribuzin ND ND ND ND ND Propachlor ND ND ND ND ND ND ND <	Atrazine Benzo(a)pyrene	ND	ND	ND	ND
Diletty/hexyl)-phthalate ND ND ND ND Diletty/hexyl)-phthalate ND ND ND ND Heptachlor ND ND ND ND Hexachlorocpclo-Pentadiene ND ND ND ND Hexachlorocyclo-Pentadiene ND ND ND ND Butachlor ND ND ND ND ND Butachlor ND ND ND ND ND Metribuzin ND ND ND ND ND Metribuzin ND ND ND ND ND Propachlor ND ND ND ND ND Prometon ND ND ND ND ND ND A/4-DDD ND ND ND ND ND ND A/4-DDE ND ND ND ND ND ND A/4-DDE ND ND ND ND <	Chlordane Technical	ND	ND	ND	ND
Di(ethylhexyl)-phthalate ND ND ND ND Heptachlor Epoxide A&B ND ND ND ND Hexachlorocyclo-Pentadiene ND ND ND ND Simazine ND ND ND ND Aidrin ND ND ND ND Butachlor ND ND ND ND Dieledrin ND ND ND ND Metolachlor ND ND ND ND Propachlor ND ND ND ND Action ND ND ND <td< td=""><td>Di(ethylhexyl)-Adipate</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>	Di(ethylhexyl)-Adipate	ND	ND	ND	ND
Heptachino: ND ND ND ND ND Heptachino: Epoxide A&B ND ND ND ND Hexachior: ND ND ND ND ND Simazine ND ND ND ND ND Aidrin ND ND ND ND ND Butachior ND ND ND ND ND Metrolachior ND ND ND ND ND Promacil ND ND ND ND ND ND Promacil ND ND ND ND ND ND At-4:DD ND ND ND ND ND ND At-4:DDT ND N	Di(ethylhexyl)-phthalate	ND	ND	ND	ND
Hexachlorocyclo-Pentadiene ND ND ND ND Hexachlorocyclo-Pentadiene ND ND ND ND ND Aldrin ND ND ND ND ND Butachlor ND ND ND ND ND Dieldrin ND ND ND ND ND Metribuzin ND ND ND ND ND Metribuzin ND ND ND ND ND Propachlor ND ND ND ND ND Prometon ND ND ND ND ND A.4-DDE ND ND ND ND ND A.4-DDE ND ND ND ND ND Addithion ND ND ND ND ND Addithion ND ND ND ND ND ND Addithion ND ND ND ND	Heptachlor Epoxide A&B	ND	ND	ND	ND
Heachlorocyclo-Pentadiene ND ND ND ND Aldrin ND ND ND ND Aldrin ND ND ND ND Dieldrin ND ND ND ND Metolachlor ND ND ND ND Metolachlor ND ND ND ND Propachlor ND ND ND ND Prometon ND ND ND ND Prometon ND ND ND ND A4-DDE ND ND ND ND A/4-DDE ND ND ND ND A/4-DDE ND ND ND ND Actanazine ND ND ND ND Actanazine ND ND ND ND A/4-DDE ND ND ND ND Adminition ND ND ND ND A	Hexachlorobenzene	ND	ND	ND	ND
Simazine ND ND ND ND Aldrin ND ND ND ND Dieldrin ND ND ND ND Metolachlor ND ND ND ND Metolachlor ND ND ND ND Propachlor ND ND ND ND Promacii ND ND ND ND Prometon ND ND ND ND Promacii ND ND ND ND A-4-DDE ND ND ND ND A-4-DDT ND ND ND ND Malathion ND ND ND ND A-4-DDT ND ND ND ND A-4-DDT <	Hexachlorocyclo-Pentadiene	ND	ND	ND	ND
Butachlor ND ND ND ND Dieldrin ND ND ND ND Metribuzin ND ND ND ND Propachlor ND ND ND ND Prometon ND ND ND ND Prometon ND ND ND ND Otazion ND ND ND ND A4-0DD ND ND ND ND 4,4-DDE ND ND ND ND Ad-4-DDE ND ND ND ND Malathion ND ND ND ND Ad-2001 ND ND ND ND Ad-4002 <	Aldrin	ND ND	ND ND	ND ND	
Diektrin ND ND ND ND Metribuzin ND ND ND ND Propachlor ND ND ND ND Propachlor ND ND ND ND Prometon ND ND ND ND Diazinon ND ND ND ND A4-DDE ND ND ND ND 4,4-DDE ND ND ND ND A4-DDE ND ND ND ND Malathion ND ND ND ND Acanaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(k)fluoranthene ND ND ND ND Benzo(k)fluoranthene ND ND ND ND	Butachlor	ND	ND	ND	ND
Metolachlor ND ND ND ND Propachlor ND ND ND ND Promacil ND ND ND ND Prometon ND ND ND ND Terbacil ND ND ND ND Diazinon ND ND ND ND 4,4-DDD ND ND ND ND 4,4-DDT ND ND ND ND Malathion ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(G,H.j)peryene ND ND ND ND Benzo(G,H.j)peryene ND ND ND ND	Dieldrin	ND	ND	ND	ND
IND IND IND IND IND Propachlor ND ND ND ND ND Prometon ND ND ND ND ND Terbacil ND ND ND ND ND Diazinon ND ND ND ND ND 4,4-DDE ND ND ND ND ND 4,4-DDT ND ND ND ND ND 4,4-DDT ND ND ND ND ND A,4-DDT ND ND ND ND ND Malathion ND ND ND ND ND Tifluralin ND ND ND ND ND ND Acenaphthylene ND ND ND ND ND ND Acenaphthylene ND ND ND ND ND ND Benzo(G)fuloranthene ND ND ND	Metolachlor	ND	ND	ND	ND
Bromacil ND ND ND ND Prometon ND ND ND ND Terbacil ND ND ND ND Diazinon ND ND ND ND 4.4-DDE ND ND ND ND Malathion ND ND ND ND Triffuralin ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthree ND ND ND ND Benzo(G)Hujgeryene ND ND ND ND Benzo(C)Hujgeryene ND ND ND ND Diberzo(A,H)anthracene ND ND ND ND	Propachlor	ND	ND	ND	ND
Prometon ND ND ND ND Terbacil ND ND ND ND Diazinon ND ND ND ND EPTC ND ND ND ND 4,4-DDE ND ND ND ND 4,4-DDT ND ND ND ND Cyanazine ND ND ND ND Malathion ND ND ND ND Malathion ND ND ND ND Napthalene ND ND ND ND Accenaphtylene ND ND ND ND Accenaphtylene ND ND ND ND Benzo(G)fluoranthene ND ND ND ND Benzo(C)A)nthracene ND ND ND ND Dibenzo(C)A)H)peryene ND ND ND ND Difeetzo(C)A)H)arthracene ND ND ND <t< td=""><td>Bromacil</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Bromacil	ND	ND	ND	ND
Ternacti ND ND ND ND EPTC ND ND ND ND 4,4-DDE ND ND ND ND 4,4-DDE ND ND ND ND 4,4-DDT ND ND ND ND A,4-DDT ND ND ND ND Gyanazine ND ND ND ND Malathion ND ND ND ND Napthalene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(G,H.joperyene ND ND ND ND Benzo(G,H.joperyene ND ND ND ND Phenanthrene ND ND ND ND Prene ND ND ND ND Phenanthrene ND ND ND ND	Prometon	ND	ND	ND	ND
EPTC ND ND ND ND 4,4-DDD ND ND ND ND 4,4-DDE ND ND ND ND 4,4-DDT ND ND ND ND A,4-DDT ND ND ND ND Malathion ND ND ND ND Malathion ND ND ND ND Malathion ND ND ND ND Fluorene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(G,H,I)peryene ND ND ND ND Benzo(K)fluoranthene ND ND ND ND Piotenzo(A,H)anthracene ND ND ND ND Piotenzo(A,H)anthracene ND ND ND ND Piotenzo(A,H)anthracene ND ND ND	Diazinon	ND	ND	ND	
4,4-DDD ND ND ND ND 4,4-DDE ND ND ND ND 4,4-DDT ND ND ND ND Cyanazine ND ND ND ND Malathion ND ND ND ND Trifluralin ND ND ND ND Naphalene ND ND ND ND Acenaphthylene ND ND ND ND Actenaphthylene ND ND ND ND Actenaphthylene ND ND ND ND Benzol(A)anthracene ND ND ND ND Benzol(S)fluoranthene ND ND ND ND Dibenzol(A,H)anthracene ND ND ND ND Chrysene ND ND ND ND Dibenzol(A,H)anthracene ND ND ND ND Prenanthrene ND ND N	EPTC	ND	ND	ND	ND
4,4-DDE ND ND ND ND 4,4-DDT ND ND ND ND Cyanazine ND ND ND ND Malathion ND ND ND ND Triffuralin ND ND ND ND Napthalene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(G)H.Ujgeryen ND ND ND ND Benzo(G)H.Ujgeryene ND ND ND ND Diberzo(A,H)anthracene ND ND ND ND Prene ND ND ND ND ND Diberzo(A,H)anthracene ND ND ND ND Prenenthrene ND ND ND ND Prenanthrene ND ND <td>4,4-DDD</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	4,4-DDD	ND	ND	ND	ND
1,4-101 ND ND ND ND Cyanazine ND ND ND ND ND Malathion ND ND ND ND ND Triffuralin ND ND ND ND ND Acenaphthylene ND ND ND ND ND Acenaphthylene ND ND ND ND ND Acenaphthylene ND ND ND ND ND Benzo(B)fluoranthene ND ND ND ND ND ND Benzo(C)(H)logranthene ND ND ND ND ND ND Benzo(C)(H)logranthene ND ND ND ND ND ND Chrysene ND ND <td>4,4-DDE</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	4,4-DDE	ND	ND	ND	ND
Malathion ND ND ND ND Triffuralin ND ND ND ND Napthalene ND ND ND ND Fluorene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Benzo(G)Auntracene ND ND ND ND Benzo(G)Huoranthene ND ND ND ND ND Benzo(G)Huoranthene ND ND ND ND ND Chrysene ND ND ND ND ND ND Dibenzo(A)Hantracene ND ND ND ND ND ND Preme ND ND ND ND ND ND ND Preme ND ND ND ND ND ND ND	Cyanazine	ND	ND	ND	ND
Trifluralin ND ND ND ND Naphtalene ND ND ND ND Fluorene ND ND ND ND Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Anthracene ND ND ND ND Benzo(G,H)peryene ND ND ND ND Benzo(G,H)peryene ND ND ND ND Chrysene ND ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND ND Pictoranthene ND ND ND ND ND ND Di	Malathion	ND	ND	ND	ND
Naphraterie ND ND ND ND Fluorene ND ND ND ND ND Acenaphthylene ND ND ND ND ND Acenaphthylene ND ND ND ND ND Anthracene ND ND ND ND ND Benzo(G,H,I)peryene ND ND ND ND ND Benzo(G,H,I)anthracene ND ND ND ND ND Chrysene ND ND ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND ND ND Pitoranthene ND ND ND ND ND ND ND Pytrene ND	Trifluralin	ND	ND	ND	ND
Acenaphthylene ND ND ND ND Acenaphthylene ND ND ND ND Anthracene ND ND ND ND Benzo(B)fluoranthene ND ND ND ND Benzo(G)fl.I)geryene ND ND ND ND Benzo(C)f.I.I)geryene ND ND ND ND Benzo(C)f.I.I)geryene ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Provanthene ND ND ND ND ND Preval ND ND ND ND ND ND Pyrene ND	Fluorene	ND	ND	ND	ND
Acenaphthene ND ND ND ND Anthracene ND ND ND ND Benzo(B)fluoranthene ND ND ND ND Benzo(G)H,I)geryene ND ND ND ND Benzo(C,H,I)geryene ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Prenanthene ND ND ND ND Prenanthracene ND ND ND ND Prenanthracene ND ND ND ND Benzyl But/l Pithalate ND ND ND ND Direthyl Pithalate ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1244 ND ND ND ND	Acenaphthylene	ND	ND	ND	ND
Antinfacene ND ND ND ND Benzo(B)fluoranthene ND ND ND ND ND Benzo(G)fluoranthene ND ND ND ND ND Benzo(G)fluoranthene ND ND ND ND ND Chrysene ND ND ND ND ND Dibenzo(A),H)anthracene ND ND ND ND ND Phenanthrene ND ND ND ND ND ND Phenanthrene ND ND ND ND ND ND Diatry Phthalate ND ND ND ND ND ND Dimetryl Phthalate ND ND ND ND ND ND Aroclor 1221 ND ND ND ND ND ND Aroclor 1242 ND ND ND ND ND ND Aroclor 1244 ND ND ND ND <td>Acenaphthene</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Acenaphthene	ND	ND	ND	ND
Benzo(B)fluoranthene ND ND ND ND Benzo(G,H,I)peryene ND ND ND ND ND Benzo(G,H,I)peryene ND ND ND ND ND Chrysene ND ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Fluoranthene ND ND ND ND Puteranthene ND ND ND ND Pyrene ND ND ND ND Benzyl Butyl Phthalate ND ND ND ND Di-N-Butyl Phthalate ND ND ND ND Diethyl Phthalate ND ND ND ND Aroclor 1221 ND ND ND ND Aroclor 1232 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1242 ND ND ND ND	Anthracene Benz(A)anthracene	ND ND	ND	ND	ND
Benzo(G,H.)peryene ND ND ND ND Benzo(K)fluoranthene ND ND ND ND ND Chrysene ND ND ND ND ND Dibenzo(A,H)anthracene ND ND ND ND Fluoranthene ND ND ND ND Premarthrene ND ND ND ND Pyrene ND ND ND ND Diethyl Phthalate ND ND ND ND Diethyl Phthalate ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1232 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1244 ND ND ND ND ND Aroclor 1250 ND<	Benzo(B)fluoranthene	ND	ND	ND	ND
Benzöl (K)fluoranthene ND ND ND ND Chrysene ND ND ND ND ND Dibenzo(A, H)anthracene ND ND ND ND ND Fluoranthene ND ND ND ND ND Phenanthrene ND ND ND ND ND Pyrene ND ND ND ND ND Di-N-Butyl Phthalate ND ND ND ND Diethyl Phthalate ND ND ND ND Diethyl Phthalate ND ND ND ND Aroclor 1232 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1254 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1254 ND ND ND ND Aroclor 1260 ND ND ND <t< td=""><td>Benzo(G,H,I)peryene</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Benzo(G,H,I)peryene	ND	ND	ND	ND
Diberzo(A,H)anthracene ND ND ND ND Piloerzo(A,H)anthracene ND ND ND ND ND Fluoranthene ND ND ND ND ND Phenanthrene ND ND ND ND ND Phenanthrene ND ND ND ND ND Benzyl Butyl Phthalate ND ND ND ND ND Diethyl Phthalate ND ND ND ND ND Diethyl Phthalate ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1244 ND ND ND ND ND ND Aroclor 1016 ND	Chrysene	ND ND	ND	ND	ND
Fluoranthene ND ND ND ND Indenc(1,2,3-CD)pyrene ND ND ND ND ND Phenanthrene ND ND ND ND ND Pyrene ND ND ND ND ND Benzyl Butyl Phthalate ND ND ND ND Di-N-Butyl Phthalate ND ND ND ND Direthyl Phthalate ND ND ND ND Direthyl Phthalate ND ND ND ND Arocior 1232 ND ND ND ND Arocior 1242 ND ND ND ND Arocior 1244 ND ND ND ND Arocior 1016 ND ND ND ND	Dibenzo(A,H)anthracene	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene ND ND ND ND Phenanthrene ND ND ND ND Pyrene ND ND ND ND Benzyl Butyl Phthalate ND ND ND ND Di-N-Eutyl Phthalate ND ND ND ND Di-N-Eutyl Phthalate ND ND ND ND Dienethyl Phthalate ND ND ND ND Toxaphene ND ND ND ND Aroclor 1221 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1246 ND ND ND ND Aroclor 1260 ND ND ND ND Dalapon ND ND	Fluoranthene	ND	ND	ND	ND
Interview ND ND ND ND Pyrene ND ND ND ND ND Benzyl Butyl Phthalate ND ND ND ND ND Di-N-Butyl Phthalate ND ND ND ND ND Diethyl Phthalate ND ND ND ND ND Direthyl Phthalate ND ND ND ND ND Toxaphene ND ND ND ND ND Aroclor 1232 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1248 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND ND Aroclor 1260 ND ND <td< td=""><td>Indeno(1,2,3-CD)pyrene</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></td<>	Indeno(1,2,3-CD)pyrene	ND	ND	ND	ND
Benzyl Butyl Phthalate ND ND ND ND Di-N-Butyl Phthalate ND ND ND ND ND Diethyl Phthalate ND ND ND ND ND Direthyl Phthalate ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1232 ND ND ND ND ND Aroclor 1242 ND ND ND ND ND Aroclor 1248 ND ND ND ND ND Aroclor 1254 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND ND Aroclor 1260 ND ND ND ND ND ND Aroclor 1260 ND ND ND ND ND ND ND ND	Pyrene	ND	ND	ND	ND
Di-N-Butyl Phthalate ND 1.18Q 0.9 ND Diethyl Phthalate ND ND ND ND Dimethyl Phthalate ND ND ND ND Toxaphene ND ND ND ND Arocior 1232 ND ND ND ND Arocior 1242 ND ND ND ND Arocior 1244 ND ND ND ND Arocior 1254 ND ND ND ND Arocior 1260 ND ND ND ND Arocior 1016 ND ND ND ND Arocior 1016 ND ND ND ND Arocior 1016 ND ND ND ND Pentachlorophenol ND ND ND ND Diagapon ND ND ND ND ND Dicoram ND ND ND ND ND ND ND ND	Benzyl Butyl Phthalate	ND	ND	ND	ND
Dremmin Finiteriate ND ND ND ND Dimethyl Phthalate ND ND ND ND Toxaphene ND ND ND ND Aroclor 1221 ND ND ND ND Aroclor 1232 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1248 ND ND ND ND Aroclor 1260 ND ND ND ND 2,4-5 ND ND ND	Di-N-Butyl Phthalate	ND	1.1BQ	0.9	ND
Toxaphene ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1221 ND ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1248 ND ND ND ND Aroclor 1246 ND ND ND ND Aroclor 1260 ND ND ND ND Herbicides in Drinking Water 2.4.5.7 (Silvex) ND ND ND Dalapon ND ND ND ND ND ND ND Dicomba ND ND	Directly Phthalate	ND	ND	3	ND
Aroclor 1221 ND ND ND ND Aroclor 1232 ND ND ND ND Aroclor 1232 ND ND ND ND Aroclor 1242 ND ND ND ND Aroclor 1248 ND ND ND ND Aroclor 1254 ND ND ND ND Aroclor 1260 ND ND ND ND Patachlorophenol ND ND ND ND Diagapon ND ND ND <t< td=""><td>Toxaphene</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Toxaphene	ND	ND	ND	ND
Arocior 1232 NU ND ND ND Arocior 1242 ND ND ND ND Arocior 1248 ND ND ND ND Arocior 1254 ND ND ND ND Arocior 1260 ND ND ND ND Arocior 1260 ND ND ND ND Arocior 1260 ND ND ND ND Arocior 1016 ND ND ND ND Arocior 160 ND ND ND ND 2,4-5 ND ND ND ND ND Pentachlorophenol ND ND ND ND ND Diaseb ND ND ND ND ND ND Dicamba ND ND ND ND ND ND Dicorabc ND ND ND ND ND ND Dicorabc ND ND ND	Aroclor 1221	ND	ND	ND	ND
Arocior 1242 ND ND ND ND Arocior 1248 ND ND ND ND Arocior 1254 ND ND ND ND Arocior 1254 ND ND ND ND Arocior 1254 ND ND ND ND Arocior 1260 ND ND ND ND Arocior 1016 ND ND ND ND Herbicides in Drinking Water - - - - - - - - - - - - - ND	Aroclor 1232	ND	ND	ND	ND
Aroclor 1254 ND ND ND ND Aroclor 1260 ND ND ND ND ND Aroclor 1260 ND ND ND ND ND Aroclor 1016 ND ND ND ND ND Herbicides in Drinking Water 2,4-5 TP (Silvex) ND ND ND ND Pentachlorophenol ND ND ND ND ND Dalapon ND ND ND ND ND Diroseb ND ND ND ND ND Dicamba ND ND ND ND ND Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND Dicklorprop ND ND ND ND ND Dichlorprop ND ND ND ND ND ND ND ND ND	Aroclor 1242	ND	ND	ND	ND
Aroclor 1260 ND ND ND ND Aroclor 1016 ND ND ND ND Herbicides in Drinking Water 2,4,5-TP (Silvex) ND ND ND ND 2,4,5-TP (Silvex) ND ND ND ND ND Pentachlorophenol ND ND ND ND ND Diaseb ND ND ND ND ND Pictoram ND ND ND ND ND Dicamba ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND Dichtorprop ND ND ND ND ND ND Actifiorfin ND ND ND ND ND ND 3,5-Dichtorborozic Acid ND ND ND ND ND ND 3,5-Dicht	Aroclor 1254	ND	ND	ND	ND
Herbicides in Drinking Water 2,4,5-TP (Silvex) ND ND ND ND 2,4,5-TP (Silvex) ND ND ND ND ND 2,4,5-TP (Silvex) ND ND ND ND ND Pentachlorophenol ND ND ND ND ND Diagon ND ND ND ND ND Dicamba ND ND ND ND ND Dicamba ND ND ND ND ND 2,4,5 T ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND ND ND Dacthal (DCPA) ND ND ND ND ND ND ND 3,5-Dichlorobenzoic Acid ND ND <td>Aroclor 1260</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Aroclor 1260	ND	ND	ND	ND
2,4-D ND ND ND ND 2,4,5-TP (Silvex) ND ND ND ND ND Pentachlorophenol ND ND ND ND ND Dalapon ND ND ND ND ND Dinoseb ND ND ND ND ND Dicamba ND ND ND ND ND Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND Bentazon ND ND ND ND ND ND Dichlorprop ND ND ND ND ND ND ND Actiflorfin ND ND ND ND ND ND ND 3,5-Dichlorobenzoic Acid ND	Herbic	ides in Drinki	ing Water	NU	שא
2,4,5-TP (Silvex) ND ND ND ND ND Pentachlorophenol ND ND ND ND ND Dalapon ND ND ND ND ND Dinoseb ND ND ND ND ND Picloram ND ND ND ND ND Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND Bentazon ND ND ND ND ND Dichlorprop ND ND ND ND ND Actiflorfin ND ND ND ND ND ND Actiflorfin ND ND ND ND ND ND ND 3,5-Dichlorobenzoic Acid ND ND ND ND ND ND Bronate (bromoxynil) ND ND ND ND ND ND	2,4-D	ND	ND	ND	ND
r-entacniorophenoi NU ND ND ND ND Dalapon ND ND ND ND ND Dinoseb ND ND ND ND ND Picloram ND ND ND ND ND Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND Dichlorprop ND ND ND ND ND Actifilorfin ND ND ND ND ND ND 3,5-Dichlorobenzoic Acid ND ND ND ND ND ND Bronate (bromoxynii) ND ND ND ND ND ND Gramoxone (parquiat) ND ND ND ND ND ND	2,4,5-TP (Silvex)	ND	ND	ND	ND
Dianseit ND ND ND ND ND Picloram ND ND ND ND ND Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND Dichlorpop ND ND ND ND ND Actiflorfin ND ND ND ND J.5-Dichlorobenzoic Acid ND ND ND ND Velpar (hexazinone) ND ND ND ND ND Bronate (bromoxynil) ND ND ND ND ND ND Gramoxone (parquiat) ND ND ND ND ND ND	Dalapon				
Picloram ND ND ND ND ND Dicamba ND ND ND ND ND 2;4 DB ND ND ND ND ND 2;4,5 T ND ND ND ND Bentazon ND ND ND ND Dichlorprop ND ND ND ND Actiflorfin ND ND ND ND J.5-Dichlorptopcic Acid ND ND ND ND Velpar (hexazinone) ND ND ND ND Bronate (bromoxynii) ND ND ND ND Gramoxone (parquat) ND ND ND ND	Dinoseb	ND	ND	ND	ND
Dicamba ND ND ND ND ND 2,4 DB ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND Dichlorprop ND ND ND ND ND Actiflorfin ND ND ND ND ND Js.Dichlorobenzoic Acid ND ND ND ND ND Js.Foliotrobenzoic Acid ND ND ND ND ND ND Bronate (bromoxynii) ND ND ND ND ND ND Gramoxone (parquiat) ND ND ND ND ND ND	Picloram	ND	ND	ND	ND
2,4 DB ND ND ND ND ND 2,4,5 T ND ND ND ND ND Bentazon ND ND ND ND ND Dichlorprop ND ND ND ND ND Acttillorfin ND ND ND ND ND Jacthal (DCPA) ND ND ND ND ND 3,5-Dichlorobenzoic Acid ND ND ND ND ND Bronate (bromoxynii) ND ND ND ND ND ND Gramoxone (parquiat) ND ND ND ND ND ND	Dicamba	ND	ND	ND	ND
Bentazon ND ND ND ND Dichlorprop ND ND ND ND Actillorfin ND ND ND ND Dacthal (DCPA) ND ND ND ND 3,5-Dichlorobenzoic Acid ND ND ND ND Velpar (hexazinone) ND ND ND ND Bronate (bromoxynii) ND ND ND ND Gramoxone (parquiat) ND ND ND ND	2,4 DB 2.4.5 T	ND	ND	ND	ND
Dichlorprop ND ND ND ND Actiflorfin ND ND ND ND Dacthal (DCPA) ND ND ND ND 3.5-Dichlorobenzoic Acid ND ND ND ND Velpar (hexazinone) ND ND ND ND Bronate (bromoxynii) ND ND ND ND Gramoxone (parquiat) ND ND ND ND	Bentazon	ND	ND	ND	ND
Actiniorin NU NU ND ND ND Dacthal (DCPA) ND ND ND ND ND 3.5-Dichlorobenzoic Acid ND ND ND ND ND Velpar (hexazinone) ND ND ND ND ND Bronate (bromoxynii) ND ND ND ND ND Gramoxone (parquiat) ND ND ND ND ND	Dichlorprop	ND	ND	ND	ND
3.5-Dichlorobenzoic Acid ND ND ND ND ND Velpar (hexazinone) ND ND ND ND ND Bronate (bromoxynil) ND ND ND ND Gramoxone (baraquat) ND ND ND ND	Actiflorfin Dacthal (DCPA)	ND	ND ND	ND ND	
Velpar (hexazinone) ND ND ND ND Bronate (bromoxynil) ND ND ND ND ND Gramoxone (parquat) ND ND ND ND ND ND	3,5-Dichlorobenzoic Acid	ND	ND	ND	ND
Bronate (bromoxynil) ND ND ND ND Gramoxone (paraguat) ND ND ND ND	Velpar (hexazinone)	ND	ND	ND	ND
	Bronate (bromoxynil) Gramoxone (paraguat)	ND ND	ND ND	ND ND	<u>ND</u>

Table 3. Continued.

Date Well ID	4/11/2007	4/11/2007	4/11/2007	4/11/2007
Chemical		HVV-2	HW-3	Sunace
Carbar	nates in Drinl	king water		
Carbofuran	ND	ND	ND	ND
Oxymal 3-Hydroxycabofuran	ND	ND	ND	
Aldicarb	ND	ND	ND	ND
Aldicarb sulfone	ND	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND	ND
Methomyl		ND	ND	
Propoxur (Baygon)	ND	ND	ND	ND
Methiocarb	ND	ND	ND	ND
Synthe	tic Organic C	ompounds	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Alachlor	ND	ND	ND	ND
Atrazine Benzo(a)pyrene		ND	ND	
Chlordane Technical	ND	ND	ND	ND
Di(ethylhexyl)-Adipate	ND	ND	ND	ND
Di(ethylhexyl)-phthalate	ND	ND	ND	ND
Heptachlor Heptachlor Epoxide A&B	ND ND	ND	ND	
Hexachlorobenzene	ND	ND	ND	ND
Hexachlorocyclo-Pentadiene	ND	ND	ND	ND
Simazine	ND	ND	ND	ND
Butachlor	UND ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Metolachlor	ND	ND	ND	ND
Metribuzin	ND	ND	ND	ND
Bromacil	ND	ND	ND	ND
Prometon	ND	ND	ND	ND
Terbacil	ND	ND	ND	ND
Diazinon	ND	ND	ND	ND
4.4-DDD	ND	ND	ND	ND
4,4-DDE	ND	ND	ND	ND
4,4-DDT	ND	ND	ND	ND
Cyanazine	ND 04	ND 03	ND 04	ND
Trifluralin	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
Anthracene	ND	ND	ND	ND
Benz(A)anthracene	ND	ND	ND	ND
Benzo(C H I)penyepe	ND	ND	ND	ND
Benzo(K)fluoranthene	ND	ND	ND	ND
Chrysene	ND	ND	ND	ND
Dibenzo(A,H)anthracene	ND	ND	ND	ND
Indepo(1.2.3-CD)pyrepe	ND ND	ND	ND	
Phenanthrene	ND	ND	ND	ND
Pyrene	ND	ND	ND	ND
Benzyl Butyl Phthalate	ND	ND	ND	ND
Diethyl Phthalate	ND	ND	ND	ND
Dimethyl Phthalate	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260		ND	ND	
Herbig	ides in Drink	ing Water	n.	in D
2,4-D	ND	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND	ND
Dalapon				
Dinoseb	ND	ND	ND	ND
Picloram	ND	ND	ND	ND
Dicamba	ND	ND	ND	ND
2,4 DB 2,4 5 T				
Bentazon	ND	ND	ND	ND
Dichlorprop	ND	ND	ND	ND
Actiflorfin	ND	ND	ND	ND
3,5-Dichlorobenzoic Acid	ND	ND	ND	ND
Velpar (hexazinone)	ND	ND	ND	ND
Bronate (bromoxynil)	ND	ND	ND	ND
Gramoxone (paraquat)	ND	ND	IND	ND

Table 3. Continued.

Date	2/13/2008	2/13/2008	2/13/2008	2/13/2008
Well ID	HW-1	HW-2	HW-3	Surface
Chemical	- to a la Dala			
Carbofuran	ates in Drin	king water	ND	ND
Oxymal	ND	ND	ND	ND
3-Hydroxycabofuran	ND	ND	ND	ND
Aldicarb	ND	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND	
Carbaryl	ND	ND	ND	ND
Methomyl	ND	ND	ND	ND
Propoxur (Baygon)	ND	ND	ND	ND
Syntheti	c Organic C	ompounds	ND	ND
Endrin	ND	ND	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Atrazine	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND
Chlordane Technical	ND	ND	ND	ND
Di(ethylhexyl)-Adipate	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND	ND
Simazine	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Butachlor	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Metolachlor	ND	ND	ND	ND
Propachlor	ND	ND	ND	ND
Bromacil	ND	ND	ND	ND
Prometon	ND	ND	ND	ND
Diazinon	ND	ND	ND	
EPTC	ND	ND	ND	ND
4,4-DDD	ND	ND	ND	ND
4,4-DDE	ND	ND	ND	ND
4,4-DDT Cyanazine	ND	ND	ND	
Malathion	ND	ND	ND	ND
Trifluralin	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
Anthracene	ND	ND	ND	ND
Benzo(R)fluoranthene	ND	ND	ND	ND
Benzo(G,H,I)pervene	ND	ND	ND	ND
Benzo(K)fluoranthene	ND	ND	ND	ND
Chrysene	ND	ND	ND	ND
Dibenzo(A,H)anthracene	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	ND	ND	ND	ND
Phenanthrene	ND	ND	ND	ND
Pyrene	ND	ND	ND	ND
Di-N-Butyl Phthalate	ND	ND	ND	
Diethyl Phthalate	ND	ND	ND	ND
Dimethyl Phthalate	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1200	ND	ND	ND	ND
Herbici	des in Drink	ing Water		
2,4-D	ND	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND	ND
Dalapon	ND	ND	ND	ND
Dinoseb	ND	ND	ND	ND
Picloram	ND	ND	ND	ND
2 4 DR	ND ND	ND ND	ND ND	
2,4.5 T	ND	ND	ND	ND
Bentazon	ND	ND	ND	ND
Dichlorprop	ND	ND	ND	ND
Actiflorfin	ND	ND	ND	ND
3,5-Dichlorobenzoic Acid	ND	ND	ND	ND
Velpar (hexazinone)	ND	ND	ND	ND
Bronate (bromoxynil)	ND	ND	ND	ND
Gramoxone (paraguat)	ND	ND	ND	ND

Table 3. Continued

Date	4/8/2008	4/8/2008	4/8/2008	4/8/2008
Well ID Chemical	HW-1	HW-2	HW-3	Surface
Carbam	ates in Drin	king water		
Carbofuran	ND	ND	ND	ND
Oxymal 3-Hydroxycabofuran	ND	ND	ND	ND
Aldicarb	ND	ND	ND	ND
Aldicarb sulfone	ND	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND	ND
Methomyl	ND	ND	ND	ND ND
Propoxur (Baygon)	ND	ND	ND	ND
Methiocarb	ND	ND	ND	ND
Endrin	ND	ND	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
Alachlor	ND ND	ND ND	ND	
Benzo(a)pyrene	ND	ND	ND	ND
Chlordane Technical	ND	ND	ND	ND
Di(ethylhexyl)-Adipate	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND	ND
Simazine	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND
Butachlor	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Metribuzin	ND	ND	ND	ND
Propachlor	ND	ND	ND	ND
Bromacil	ND	ND	ND	ND
Terbacil	ND	ND		
Diazinon	ND	ND	ND	ND
EPTC	ND	ND	ND	ND
4,4-DDD	ND	ND	ND	ND
4,4-DDE	ND	ND	ND	ND
Cyanazine	ND	ND	ND	ND
Malathion	ND	ND	ND	ND
Nanthalene	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND
Benz(A)anthracene	ND	ND	ND	ND
Benzo(B)fluoranthene	ND	ND	ND	ND
Benzo(G,H,I)peryene	ND	ND	ND	ND
Chrysene	ND	ND	ND	
Dibenzo(A,H)anthracene	ND	ND	ND	ND
Fluoranthene	ND	ND	ND	ND
Phenanthrene	ND	ND	ND	ND
Pyrene	ND	ND	ND	ND
Benzyl Butyl Phthalate	ND	ND	ND	ND
Di-N-Butyl Phthalate	ND	ND	ND	ND
Dimethyl Phthalate	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
Aroclor 1221	ND	ND	ND	ND
Aroclor 1232 Aroclor 1242	ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	ND
Aroclor 1254	ND	ND	ND	ND
Aroclor 1260	ND	ND	ND	ND
Herbici	des in Drink	ing Water	ND	ND
2,4-D	ND	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND	ND
Dalapon	ND	ND	ND	ND
Dinoseb	ND	ND	ND	ND
Picloram	ND	ND	ND	ND
Dicamba 2.4 DR	ND ND	ND ND	ND	ND ND
2,4,5 T	ND	ND	ND	ND
Bentazon	ND	ND	ND	ND
Dichlorprop	ND	ND	ND	ND
Dacthal (DCPA)	ND	ND	ND	ND
3,5-Dichlorobenzoic Acid	ND	ND	ND	ND
Velpar (hexazinone)	ND	ND	ND	ND
Gramoxone (paraduat)	ND	ND	ND	ND
* - Data is "suspect", the	e field duplica	ate sample o	loes not agi	ee

ta is "suspect", the field duplicate sample Table 3. Continued.

Date	5/27/2008	5/27/2008	5/27/2008
Well ID	HW-1	HW-2	HW-3
Chemical			
Carbamates in	n Drinking v	vater	
Carbofuran	ND	ND	ND
Oxymal	ND	ND	ND
3-Hydroxycabofuran	ND	ND	ND
Aldicarb	ND	ND	ND
Aldicarb sulfoxide	ND	ND	
Carbaryl	ND	ND	
Methomyl	ND	ND	ND
Propoxur (Baygon)	ND	ND	ND
Methiocarb	ND	ND	ND
Synthetic Org	anic Compo	ounds	
Endrin	ND	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND
Alachlor	ND	ND	
Atrazine	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND
Chlordane Technical	ND	ND	ND
Di(ethylhexyl)-Adipate	ND	ND	ND
Di(ethylhexyl)-phthalate	ND	ND	ND
Heptachlor	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	
Hexachlorocyclo-Pentadiene	ND	ND	
Simazine	ND	ND	
Aldrin	ND	ND	ND
Butachlor	ND	ND	ND
Dieldrin	ND	ND	ND
Metolachlor	ND	ND	ND
Metribuzin	ND	ND	ND
Propachlor	ND	ND	ND
Bromacii	ND	ND	
Terbacil	ND	ND	
Diazinon	ND	ND	ND
EPTC	ND	ND	ND
4,4-DDD	ND	ND	ND
4,4-DDE	ND	ND	ND
4,4-DDT	ND	ND	ND
Cyanazine	ND	ND	ND
Trifluralio	ND	ND	
Napthalene	ND		
Fluorene	ND	ND	
Acenaphthylene	ND	ND	ND
Acenaphthene	ND	ND	ND
Anthracene	ND	ND	ND
Benz(A)anthracene	ND	ND	ND
Benzo(B)fluoranthene	ND	ND	
Benzo(G,H,I)peryene	ND	ND	
Chrysene	ND	ND	
Dibenzo(A.H)anthracene	ND	ND	ND
Fluoranthene	ND	ND	ND
Indeno(1,2,3-CD)pyrene	ND	ND	ND
Phenanthrene	ND	ND	ND
Pyrene	ND	ND	ND
Benzyl Butyl Phthalate	ND	ND	ND
Di-IN-Bulyi Phinaiale			
Dimethyl Phthalate	ND	ND	ND
Toxaphene	ND	ND	ND
Aroclor 1221	ND	ND	ND
Aroclor 1232	ND	ND	ND
Aroclor 1242	ND	ND	ND
Aroclor 1248	ND	ND	ND
Aroclor 1254	ND	ND	
Aroclor 1016	ND	ND	
Herbicides in	Drinking W	later	
2.4-D	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND
Pentachlorophenol	ND	ND	ND
Dalapon	ND	ND	ND
Dinoseb	ND	ND	ND
Picloram	ND	ND	ND
	ND		
2,4 DD 2 4 5 T			
Bentazon	ND	ND	ND
Dichlorprop	ND	ND	ND
Actiflorfin	ND	ND	ND
Dacthal (DCPA)	ND	ND	ND
3,5-Dichlorobenzoic Acid	ND	ND	ND
Velpar (hexazinone)	ND	ND	ND
Gramoxone (paraquat)	ND	ND	ND

Table 3. Continued.

Date	10/28/2008	10/28/2008	10/28/2008
Well ID Chemical	HW-1	HW-2	HW-3
Carbamates	s in Drinking	water	
Carbofuran	NS	ND	ND
Oxymal	NS	ND	ND
Aldicarb	NS NS	ND ND	ND ND
Aldicarb sulfone	NS	ND	ND
Aldicarb sulfoxide	NS	ND	ND
Methomyl	NS	ND	ND
Propoxur (Baygon)	NS	ND	ND
Methiocarb Synthetic O	NS rganic Comp	ND	ND
Endrin	NS	ND	ND
Lindane (BHC-Gamma)	NS	ND	ND
Alachlor	NS	ND ND	ND ND
Atrazine	NS	ND	ND
Benzo(a)pyrene	NS	ND	ND
Di(ethylhexyl)-Adipate	NS	ND ND	ND ND
Di(ethylhexyl)-phthalate	NS	ND	ND
Heptachlor	NS	ND	ND
Heptachlor Epoxide A&B Hexachlorobenzene	NS NS	ND ND	ND ND
Hexachlorocyclo-Pentadiene	NS	ND	ND
Simazine	NS	ND	ND
Aldrin	NS NS	ND ND	ND ND
Dieldrin	NS	ND	ND
Metolachlor	NS	ND	ND
Metribuzin	NS	ND	ND
Bromacil	NS	ND	ND
Prometon	NS	ND	ND
Terbacil	NS	ND	ND
FPTC	NS	ND	
4,4-DDD	NS	ND	ND
4,4-DDE	NS	ND	ND
4,4-DDT Cvanazine	NS	ND	ND
Malathion	NS	ND	ND
Trifluralin	NS	ND	ND
Napthalene	NS	ND	ND
Acenaphthylene	NS	ND	ND
Acenaphthene	NS	ND	ND
Anthracene Benz(A)anthracene	NS	ND	ND
Benzo(B)fluoranthene	NS	ND	ND
Benzo(G,H,I)peryene	NS	ND	ND
Benzo(K)fluoranthene	NS	ND	ND
Dibenzo(A.H)anthracene	NS	ND	ND
Fluoranthene	NS	ND	ND
Indeno(1,2,3-CD)pyrene	NS	ND	ND
Pyrene	NS	ND	ND
Benzyl Butyl Phthalate	NS	ND	ND
Di-N-Butyl Phthalate	NS	ND	ND
Dietriyi Phthalate	NS	ND	ND
Toxaphene	NS	ND	ND
Aroclor 1221	NS	ND	ND
Aroclor 1232 Aroclor 1242	NS NS		
Aroclor 1248	NS	ND	ND
Aroclor 1254	NS	ND	ND
Aroclor 1260 Aroclor 1016	NS NS	ND ND	ND ND
Herbicides	in Drinking V	Vater	
2,4-D	NS	ND	ND
2,4,5-TP (Silvex)	NS	ND	ND
Dalapon	NS	ND	ND
Dinoseb	NS	ND	ND
Picloram	NS	ND	ND
2,4 DB	NS	ND	ND
2,4,5 T	NS	ND	ND
Bentazon	NS	ND	ND
Actiflorfin	NS NS		
Dacthal (DCPA)	NS	ND	ND
3,5-Dichlorobenzoic Acid	NS	ND	ND
Velpar (hexazinone) Bronate (bromovvnil)	NS NS	ND ND	ND ND
Gramoxone (paraquat)	NS	ND	ND
NS -	Not Sampled		

Table 3. Continued.

Date	12/16/2008	12/16/2008	12/16/2008
Well ID	HW-1	HW-2	HW-3
Chemical			
Carbamates	in Drinking	water	
Carbofuran	ND	ND	ND
Oxymai 2 Hydroxycobofyrop	ND	ND	ND
Aldicarb	ND	ND	ND
Aldicarb sulfone	ND	ND	ND
Aldicarb sulfoxide	ND	ND	ND
Carbaryl	ND	ND	ND
Methomyl	ND	ND	ND
Methiocarb	ND	ND	
Synthetic O	rganic Comp	ounds	ND
Endrin	ND	ND	ND
Lindane (BHC-Gamma)	ND	ND	ND
Methoxychlor	ND	ND	ND
Alachlor	ND	ND	ND
Benzo(a)pyrene	ND	ND	
Chlordane Technical	ND	ND	ND
Di(ethylhexyl)-Adipate	ND	ND	ND
Di(ethylhexyl)-phthalate	ND	ND	ND
Heptachlor	ND	ND	ND
Heptachlor Epoxide A&B	ND	ND	ND
Hexachlorocyclo-Pentadiene	ND	ND	
Simazine	ND	ND	ND
Aldrin	ND	ND	ND
Butachlor	ND	ND	ND
Dieldrin	ND	ND	ND
Metolachlor	ND	ND	ND
Propachlor	ND	ND	
Bromacil	ND	ND	ND
Prometon	ND	ND	ND
Terbacil	ND	ND	ND
Diazinon	ND	ND	ND
EPTC	ND	ND	ND
4,4-DDE	ND	ND	
4.4-DDT	ND	ND	ND
Cyanazine	ND	ND	ND
Malathion	ND	ND	ND
Trifluralin	ND	ND	ND
Napthalene	ND	ND	ND
Acenaphthylene	ND	ND	
Acenaphthene	ND	ND	ND
Anthracene	ND	ND	ND
Benz(A)anthracene	ND	ND	ND
Benzo(B)fluoranthene	ND	ND	ND
Benzo(G,H,I)peryene	ND	ND	ND
Chrysene	ND	ND	
Dibenzo(A.H)anthracene	ND	ND	ND
Fluoranthene	ND	ND	ND
Indeno(1,2,3-CD)pyrene	ND	ND	ND
Phenanthrene	ND	ND	ND
Pyrene	ND	ND	ND
Di-N-Rutyl Phthalate			
Diethyl Phthalate	ND	ND	ND
Dimethyl Phthalate	ND	ND	ND
Toxaphene	ND	ND	ND
Aroclor 1221	ND	ND	ND
Aroclor 1232	ND	ND	ND
Aroclor 1242	ND		
Aroclor 1240	ND	ND	ND
Aroclor 1260	ND	ND	ND
Aroclor 1016	ND	ND	ND
Herbicides	in Drinking V	Vater	
2,4-D	ND	ND	ND
2,4,5-TP (SIIVEX)			
Dalanon	ND	ND	ND
Dinoseb	ND	ND	ND
Picloram	ND	ND	ND
Dicamba	ND	ND	ND
2,4 DB	ND	ND	ND
2,4,5 T	ND	ND	ND
Dichlororop	ND		ND
Actiflorfin	ND	ND	ND
Dacthal (DCPA)	ND	ND	ND
3,5-Dichlorobenzoic Acid	ND	ND	ND
Velpar (hexazinone)	ND	ND	ND
Bronate (bromoxynil) Gramoxone (paraguat)	ND	ND	ND

Table 3. Continued.

Figure 1. Area and regional setting.

Figure 2. Local setting, including locations of both off-site and on-site wells used for water level monitoring.

Figure 3. Local setting, showing ditches, site boundaries, and location of water quality monitoring wells.

0.25 Miles

Figure 4. Ramp flume at upstream end of Branch Ditch. The vertical white tube is where the transducer is installed. The Wells Ditch fish screen and diversion weir is in the foreground. This view is to the north.

Figure 5. Ramp flume in Branch Ditch where it enters the H-W Site. This view is to the west.

Date & Time

Figure 6. Calculated instantaneous water flow through the two ramp flumes and accumulative total acre-feet delivered to the H-W Site during the 2009 SAR season.

Hall Wentland Water Level Monitoring - 2009 Season Monitoring 11/17/2008 to 6/4/2009

Date and Time

Figure 7. Water levels in feet amsl before, during, and after the 2009 SAR season in the three H-W Site monitoring wells.

Figure 8. Measured water levels in the two off-site wells.

Duio

Figure 9. Source water and groundwater pH during the 2009 SAR season.

Figure 10. Electrical conductance (EC) in source water and groundwater during the 2009 SAR Season.

Figure 11. Nitrate-N concentrations in source water and groundwater during the 2009 SAR Season.

Figure 12. Total disolved solids (TDS) in source water and groundwater during the 2009 SAR Season.

Figure 13. Chloride concentration in source water and groundwater during the 2009 SAR Season.

Figure 14. Soluable reactive phosphorus (SRP) in source water and groundwater during the 2009 SAR Season.

Figure 15. Hardness in source water and groundwater during the 2009 SAR Season.

Date and Time

Figure 16. Hydrographs for wells HW-1, HW-2, and HW-3 from February 2006 through June 2009, for the 2006, 2007, 2008, and 2009 SAR Seasons.

Figure 17. Water levels in wells HW-1, HW-2, and HW-3 compared to flows onto the H-W Site calculated for the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 18. pH in source water and groundwater during the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 19. EC in source water and groundwater during the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 20. Nitrate-N in source water and groundwater during the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 21. Chloride in source water and groundwater during the 2006, 2007, 2008, and 2009 SAR seasons.

Figure 22. SRP in source water and groundwater during the 2006, 2007, 2008, and 2009 SAR season.

APPENDIX A

2009 Field Notes

2/3/09 2/3/09 13 22 on site Fline 1.3 cfs 10154 EPLWW gauge @ 0.73 4.13 cfs vater 13 only gons to Hall 11,35 Fish screen in stalled pusture since 13:20 Division stuff 0.94" Onsite state 0.93 flume 1.5ch 14:02 fine 1.3 cs 12:00 Plursion stalt 0.95 Alma 1.6 cfs (111) 12:10 daned screen 321ft 1.1 flume 1. Tets 1218 onside stall 0.95 Anne 135000 1223 onside shift 0.96 fline 1.38 on aile shaff 0.97 12 30 1.40 onsite Stafe 0.95 n 38 1.35 diate state 1940 - 19**1** PTW - 13.26 12:53 DTW-21.20 13:03 13:55 DTV- 18.79

3/13/09 313/09 made drawing of wetted ann napped wat spot on Hall pisture MW-1 - 20.56 2 20 HW-3-19.13' Flume had no drop and read (. 165 235 cleaned out in let to samp pond on site flune 1:2 cfs 2:40 staff 0.90' 203 Alume Las drop now HW-2 - 18.86' 3 15 diversion flume 1.3 cfs 3:35 5482 0.86 EPLWW gange 0,78

4/15/01 3/20/09 onside Blall pusture made in Siltration Map Alow of which have been drive on site Share 1.4 cls 12:35 to the Brid side of protine using notes sight diversion. There is a drop de of the Shine changed on Sat 4/11 inis ing 1340 reusual fline milled Tx 1353 HU-1 15.40' HW-3 16.19' 1411 NZO HU-2 13,52' diversion staff 0.5 durson flame 1.5 transdereer take is purriled in muck loose made 15:05 pulled flume ad direction and fish scaren, to be picked up next week. Also pulled with poords to equalize flow down branch ditchand wells down 0174 mil

6/4/09 5/ 19/09 HW-1 23,03 13:19 HW-2 DTW 19.80' 11:37 HW-3 DTW 22,04 11:52 19.41 13:25 HW-3 17.57 HW-1 DTW 2502 12:54 13:38 HW-2 10.001 (51111) 1000 (1 m m

Date: 2/20/09 Time: 13:15 Temp: Weather: vury cloudy Flume: ts efs	42 K	,+10		Flowing 1 2
Comments: dark shude = higher flow	e		1 AS	3 HT
lower flow to		1 Son		
			X AX	× 5
				7
		C3/N 28		8
				9
	2		20 P	1
			1 pr	12
				13
		a na		16
		A Start		17
	a N			18

3/13/2009 Contunued

1

1

r

3/20/2009 continued ir LO

APPENDIX B

2009 Water Quality Data

December 10, 2008

Page 1 of 1

Mr. Troy Baker Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862

RE: 08-15517 - Locker/Hall-Wetland

Dear Mr. Troy Baker,

Your project: Locker/Hall-Wetland, was received on Wednesday October 29, 2008. The following comments are reported for your project:

Samples 32783 (H-3) and 32784 (H-2) were also analyzed for PCBs and Toxaphene under method 508.1. Both sample were non-detect for these compounds. There was no charge for this analysis.

If you have questions phone me at 800 755-9295.

Respectfully Submitted,

For LJA

Lawrence J Henderson, PhD Director of Laboratories

Enclosures Data Report QC Reports Chain of Custody

Page 2 of 2 Reference Number: 08-15517 Report Date: 11/7/2008

Data Report

Collected By: Baker

Date Received: 10/29/2008

Lab Number: 32783 Sample Description: H-3 - Hall-Wetland #3							Sample	e Date:	10/28/2008		
CAS ID#	Analyte	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	st Batch	Comments
E-10139	HYDROGEN ION (pH)	6.43			pH Units	1.0	SM4500-H+ B	10/29/2008	МАК	PH_081029	
14797-55-8	NITRATE-N	1.42	0.100	0.015	mg/L	1.0	300.0	10/29/2008	BJ	1081029A	
16887-00-6	CHLORIDE	2.3	0.1	0.012	mg/L	1.0	300.0	10/29/2008	BJ	1081029A	
E-10173	TOTAL DISSOLVED SOLIDS	127	10	6	mg/L	1.0	SM2540 C	10/29/2008	CCN	TD5_081029	
14265-44-2	ORTHO-PHOSPHATE	0.20	0.01	0.002	mg/L	1.0	SM4500-P F	10/20/2008	SO	OPHOS-081029	
E-10184	ELECTRICAL CONDUCTIVITY	163	10		uS/cm	1.0	SM2510 B	11/3/2008	CCN	EC_081103	
E-10617	TURBIDITY	0.40	0.05	0.02	NTU	1.D	180.1	10/29/2008	мак	TURB_081029	
15541-45-4	BROMATE	ND	0.005	0.0013	mg/L	1.0	300.1	11/4/2008	MVP	D051104A	
E-11778	HARDNESS	64.3	3.30	0.055	mg CaC(1.0	200.7	11/3/2008	BJ	200.7-081103A	
E-10117	CHEMICAL OXYGEN DEMAND	ND	8	2	mg/L	1.0	SM5220 D	11/4/2008	МАК	COD_081184	
Lab Num	ber: 32784 Sam	ple Descriptio	on: H-2 - H	lall-Wetlar	nd #2			Sample	Date:	10/28/2008	
Lab Num CAS ID#	ber: 32784 Sam Analyte	ple Descriptio	on: H-2 - ł PQL	Hall-Wetlar	nd #2 Units	DF	Method	Sample	Date:	10/28/2008 at Batch	Comments
Lab Num CAS ID# E-10139	ber: 32784 Sam Analyte HYDROGEN ION (pH)	ple Descriptio Result 6.38	on: H-2 - PQL	iall-Wetlar	nd #2 Units pH Units	DF 1.9	Method SM4500-H+ B	Sample Analyzed	Date: Analys	10/28/2008 st Batch PH_081029	Comments
Lab Num CAS ID# E-10139 14797-55-8	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N	ple Descriptio Result 6.38 0.85	on: H-2 - PQL 0.100	Hall-Wetlar MDL 0.015	nd #2 Units pH Units mg/L	DF 1.0 1.0	Method SM4500-H+ B 300.0	Sample Analyzed 10/29/2008 10/29/2008	Date: Analys MAK BJ	10/28/2008 st Batch PH_081029 1081029A	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE	ple Descriptio Result 6.38 0.85 3.2	0n: H-2 - PQL 0.100 0.1	1all-Wetlar MDL 0.015 0.012	nd #2 Units pH Units mg/L mg/L	DF 1.0 1.0	Method SM4500-H+ B 300.0 300.0	Sample Analyzed 10/29/2008 10/29/2008	Date: Analys MAK BJ BJ	10/28/2008 st Batch PH_081029 1081029A 1081029A	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS	ple Descriptio Result 6.38 0.85 3.2 132	PQL 0.100 0.1 10	Hall-Wetlar MDL 0.015 0.012 6	nd #2 Units pH Units mg/L mg/L mg/L	DF 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 300.0 SM2540 C	Sample Analyzed 10/20/2008 10/20/2008 10/20/2008 10/29/2008	Analys MAK BJ CCN	10/28/2008 at Batch PH_081029 ID81029A ID81029A TDS_081029	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173 14265-44-2	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS ORTHO-PHOSPHATE	ple Descriptio Result 6.38 0.85 3.2 132 0.25	PQL 0.100 0.1 10 0.01	Hall-Wetlar MDL 0.015 0.012 6 0.002	nd #2 Units pH Units mg/L mg/L mg/L mg/L	DF 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 300.0 SM2540 C SM4500-P F	Sample Analyzed 10/29/2008 10/29/2008 10/29/2008 10/29/2009 10/29/2009	Date: Analys MAK BJ BJ CCN SO	10/28/2008 st Batch PH_081029 I081029A I081029A TDS_081029 OPHOS-081029	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173 14265-44-2 E-10184	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS ORTHO-PHOSPHATE ELECTRICAL CONDUCTIVITY	ple Descriptio Result 6.38 0.85 3.2 132 0.25 176	PQL 0.100 0.1 10 0.01 10	Hall-Wetlar MDL 0.015 0.012 6 0.002	nd #2 Units pH Units mg/L mg/L mg/L mg/L uS/cm	DF 1.0 1.0 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 300.0 SM2540 C SM4500-P F SM2510 B	Sample Analyzed 10/26/2008 10/29/2008 10/29/2008 10/29/2008 10/29/2009 11/3/2008	Analys MAK BJ BJ CCN SD CCN	10/28/2008 at Batch PH_081029 I081029A I081029A TDS_081029 OPHOS-081029 EC_081103	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173 14265-44-2 E-10184 E-10617	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS ORTHO-PHOSPHATE ELECTRICAL CONDUCTIVITY TURBIDITY	ple Description Result 6.38 0.85 3.2 132 0.25 176 6.00	PQL 0.100 0.1 10 0.01 10 0.05	Hall-Wetlar MDL 0.015 0.012 6 0.002 0.02	nd #2 Units pH Units mg/L mg/L mg/L uS/cm NTU	DF 1.0 1.0 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 SM2540 C SM4500-P F SM2510 B 180.1	Sample Analyzed 10/20/2008 10/20/2008 10/20/2008 10/20/2008 10/20/2008 11/3/2008 10/20/2008	Analys MAK BJ CCN SD CCN MAK	10/28/2008 at Batch PH_081029 I081029A I081029A TDS_081029 OPHOS-081029 EC_081103 TURB_081029	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173 14265-44-2 E-10184 E-10617 15541-45-4	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS ORTHO-PHOSPHATE ELECTRICAL CONDUCTIVITY TURBIDITY BROMATE	ple Description Result 6.38 0.85 3.2 132 0.25 176 6.00 ND	PQL 0.100 0.1 10 0.01 10 0.05 0.005	Hall-Wetlar MDL 0.015 0.012 6 0.002 0.02 0.02 0.013	nd #2 Units pH Units mg/L mg/L mg/L uS/cm NTU mg/L	DF 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 300.0 SM2540 C SM4500-P F SM2510 B 180.1 300.1	Sample Analyzed 10/20/2008 10/20/2008 10/20/2008 10/20/2008 10/20/2008 11/3/2008 10/20/2006 11/4/2008	Analys MAK BJ BJ CCN SO CCN MAK MVP	10/28/2008 at Batch PH_081029 ID81029A ID81029A TDS_081029 OPHOS-081029 EC_081103 TURB_081029 D081104A	Comments
Lab Num CAS ID# E-10139 14797-55-8 16887-00-6 E-10173 14265-44-2 E-10184 E-10617 15541-45-4 E-11778	ber: 32784 Sam Analyte HYDROGEN ION (pH) NITRATE-N CHLORIDE TOTAL DISSOLVED SOLIDS ORTHO-PHOSPHATE ELECTRICAL CONDUCTIVITY TURBIDITY BROMATE HARDNESS	ple Description Result 6.38 0.85 3.2 132 0.25 176 6.00 ND 72.1	PQL 0.100 0.1 10 0.01 10 0.05 0.005 3.30	Hall-Wetlar MDL 0.015 0.012 6 0.002 0.002 0.002 0.0013 0.055	nd #2 Units pH Units mg/L mg/L mg/L uS/cm NTU mg/L mg/L mg/L mg CaC(DF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Method SM4500-H+ B 300.0 300.0 SM2540 C SM4500-P F SM2510 B 180.1 300.1 200.7	Sample Analyzed 10/20/2008 10/29/2008 10/29/2008 10/29/2008 10/29/2008 11/3/2008 11/4/2008 11/3/2008	Analys MAK BJ CCN SO CCN MAK MVP BJ	10/28/2008 at Batch PH_081029 1081029A 1081029A 1081029A TDS_081029 OPHOS-081029 EC_081103 TURB_081029 D081104A 200.7-081103A	Comments

Page 1 of 1

Reference Number: 08-15517

HERBICIDES IN DRINKING WATER

Client Name: Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862

Project: Locker/Hall-Wetland Lab Number: 04632783 Report Date: 11/13/2008 Field ID: H-3 Sample Description: Hall-Wetland #3 Date Analyzed: 11/7/2008 Extraction Date: 515_081031 Sampled By: Baker Sample Date: 10/28/2008 Analyst: CQ Supervisor: Source Type: Sampler Phone: Analytical Method: 515.1 **Chlorophenoxy Herbicides** CAS COMPOUND RESULTS Units MDL MCL COMMENT PQL **EPA Regulated** 94-75-7 24-D ND 0.2 0.11 70 ug/L 93-72-1 50 2,4,5 - TP (SILVEX) ND ug/L 0.1 0.02 87-86-5 PENTACHLOROPHENOL ND 0.1 0.044 1 ug/L 75-99-0 DALAPON ND 1.3 0.80 200 ug/L 7 88-85-7 DINOSEB ND 0.2 0.16 ug/L 1918-02-1 PICLORAM 0.1 0.089 500 ND ug/L EPA Unregulated 1918-00-9 DICAMBA ND 0.1 0.045 ug/L State Unregulated 0.089 1861-32-1 TOTAL (DCPA & Metabolites) ND 0.1 ug/L E-14-02-8 DCPA (ACID METABOLITES) ND ug/L 0.1 0.1 94-82-6 0.8 0.10 2,4 DB ND ug/L 93-76-5 2,4,5 T ND 0.1 0.044 ug/L 25057-89-0 BENTAZON 0.067 ND 0.2 ug/L 120-36-5 DICHLORPROP ND 0.3 0.089 ug/L 50594-66-6 ACIFLUORFEN ND ug/L 0.1 0.089 CHLORAMBEN 133-90-4 ND 0.2 0.2 ug/L 51-36-5 3,5 - DICHLOROBENZOIC ACID ND ug/L 0.1 0.044

An amount of "ND" indicates that the compound was not detected above the Lab's Method Detection Limit - MDL.

MCL- Maximum Contaminant Level, maximum permissible level of a contaminant in water established by EPA, NPDWR. State Advisory Level (SAL) for Unregulated compounds.

A blank MCL or SAL value indicates a level is not currently established.

PQL - Practical Quantitation Limit is the concentration of the standard analyzed during the initial calibration. MDL - Method Detection Limit is the lab's minimum concentration a compound can be measured and reported with 99% confidence that the compound concentration is greater than zero.

J - Estimated value.

These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples.

Page 1 of 1

Reference Number: 08-15517

HERBICIDES IN DRINKING WATER

Client Name:	Walla Walla Basin Watershed Council
	810 S Main Street
	Milton-Freewater, OR 97862

Lab Number: 04632784 Project: Locker/Hall-Wetland Report Date: 11/13/2008 Field ID: H-2 Date Analyzed: 11/7/2008 Sample Description: Hall-Wetland #2 Extraction Date: 515 081031 Sampled By: Baker CO Analyst: Sample Date: 10/28/2008 Supervisor: #41 Source Type: Analytical Method: 515.1 Sampler Phone: **Chlorophenoxy Herbicides** COMMENT CAS COMPOUND RESULTS Units PQL MDL MCL **EPA Regulated** 70 ND ug/L 0.2 0.11 94-75-7 2,4 - D 50 0.02 93-72-1 2,4,5 - TP (SILVEX) ND ug/L 0.1 ND 0.1 0.044 1 87-86-5 PENTACHLOROPHENOL ug/L 200 75-99-0 ND 1.3 0.80 ug/L DALAPON 7 0.2 0.16 88-85-7 DINOSEB ND ug/L 0.1 0.089 500 1918-02-1 PICLORAM ND ug/L **EPA Unregulated** ND 0.1 0.045 1918-00-9 DICAMBA ug/L State Unregulated 0.089 ND 0.1 1861-32-1 TOTAL (DCPA & Metabolites) ug/L DCPA (ACID METABOLITES) ND ug/L 0.1 0.1 E-14-02-8 0.10 0.8 94-82-6 2,4 DB ND ug/L 0.044 ND 0.1 93-76-5 ug/L 2,4,5 T 0.067 ND 0.2 25057-89-0 BENTAZON ug/L 0.089 ND 0.3 120-36-5 DICHLORPROP ug/L 50594-66-6 ACIFLUORFEN ND ug/L 0.1 0.089 0.2 0.2 ND 133-90-4 CHLORAMBEN ug/L 0.044 51-36-5 3,5 - DICHLOROBENZOIC ACID ND ug/L 0.1

An amount of "ND" indicates that the compound was not detected above the Lab's Method Detection Limit - MDL

MCL- Maximum Contaminant Level, maximum permissible level of a contaminant in water established by EPA, NPDWR. State Advisory Level (SAL) for Unregulated compounds

A blank MCL or SAL value indicates a level is not currently established. PQL - Practical Quantitation Limit is the concentration of the standard analyzed during the initial calibration.

MDL - Method Detection Limit is the lab's minimum concentration a compound can be measured and reported with 89% confidence that the compound concentration is greater than zero.

J - Estimated value These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples. FORM: SOC_GEN

Page 1 of 1

Reference Number: 08-15517

CARBAMATES IN DRINKING WATER

Client Name:	Walla Walla Basin Watershed Council
	810 S Main Street
	Milton-Freewater, OR 97862

	Project: Field ID: Sample Description: Sampled By: Sample Date: Source Type: Sampler Phone:	Locker/Hall-Wetland H-3 Hall-Wetland #3 Baker 10/28/2008	3			Li R Date Extra Analytie	ab Number: eport Date: e Analyzed: action Date: Analyst: Supervisor: cal Method:	04632783 11/4/2008 10/31/2008 531_081031 GO Y M 531.2 Carbamates	
CAS	COMPOUND		RESULTS	Units	PQL	MDL	MCL	COMMENT	
ц =,	EPA Regulated								
23135-22-0	OXYMAL		ND	ug/L	1.0	0.3	200		
1565-85-2	CARBOFURAN		ND	ug/L	1.0	0.2	40		
	EPA Unregulated								
1646-87-3	ALDICARB SULFOXIDE		ND	ug/L	1.0	0.3			
1646-88-4	ALDICARB SULFONE		ND	ug/L	1.0	0.3			
16752-77-5	METHOMYL		ND	ug/L	1.0	0.3			
16655-82-6	3-HYDROXYCARBOFU	RAN	ND	ug/L	1.0	0.3			
116-06-3	ALDICARB		ND	ug/L	1.0	0.3			
63-25-2	CARBARYL		ND	ug/L	1.0	0.2			
	State Unregulated	- Other							
114-26-1	PROPOXUR (BAYGON)		ND	ug/L	1.0	0.4			
2032-65-7	METHIOCARB		ND	ug/L	1.0	0.3			

An amount of "ND" indicates that the compound was not detected above the Lab's Method Detection Limit - MDL.

MCL- Maximum Contaminant Level, maximum permissible level of a contaminant in water established by EPA, NPDWR. State Advisory Level (SAL) for Unregulated compounds.

A blank MCL or SAL value indicates a level is not currently established. PQL - Practical Quantitation Limit is the concentration of the standard analyzed during the initial calibration.

MDL: - Method Detection Limit is the labs minimum concentration a compound can be measured and reported with 99% confidence that the compound concentration is greater than zero. J - Estimated value.

These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples. FORM: SOC_GEN

Page 1 of 1

CARBAMATES IN DRINKING WATER

Client Name:	Walla Walla Basin Watershed Council	Reference Number:	08-15517
	810 S Main Street		
	Milton-Freewater, OR 97862		

	Project:	Locker/Hall-Wetland	1			L	ab Number:	04632784
	Field ID:	H-2				F	Report Date:	11/4/2008
	Sample Description:	Hall-Wetland #2				Dat	te Analyzed:	10/31/2008
	Sampled By:	Baker				Extr	action Date:	531_081031
	Sample Date:	10/28/2008					Analyst:	ço
	Source Type:						Supervisor:	M
	Sampler Phone:					Analyt	ical Method:	531.2
								Carbamates
CAS	COMPOUND		RESULTS	Units	PQL	MDL	MCL	COMMENT
	EPA Regulated							
23135-22-0	OXYMAL		ND	ug/L	1.0	0.3	200	
1563-66-2	CARECEURAN		ND	ug/L	1.0	0.2	40	
	EPA Unregulated							
1646-87-3	ALDICARB SULFOXIDE		ND	ug/L	1.0	0.3		
1646-88-4	ALDICARB SULFONE		ND	ug/L	1.0	0.3		
16752-77-5	METHOMYL		ND	ug/L	1.0	0.3		
16655-82-6	3-HYDROXYCARBOFU	RAN	ND	ug/L	1.0	0.3		
116-06-3	ALDICARB		ND	ug/L	1.0	0.3		
63 - 25 - 2	CARBARYL		ND	ug/L	1.0	0.2		
	State Unregulated	I - Other						
114-26-1	PROPOXUR (BAYGON))	ND	ug/L	1.0	0.4		
2032-65-7	METHIOCARB		ND	ug/L	1.0	0.3		

An amount of "ND" indicates that the compound was not detected above the Lab's Method Detection Limit - MDL.

An extension of the compound has not detected advecting table break of the control of the compound. MCL-Maximum Contaminat Level, maximum permissible level of a contaminant in water established by EPA, NPDWR. State Advisory Level (SAL) for Unregulated compounds. A blank MCL or SAL value indicates a level is not currently established.

PCL - Practical Quantitation Limit is the lab's minimum concentration a compound can be measured and reported with 99% confidence that the compound concentration is greater than zero. J - Estimated value.

These test results meet all the requirements of NELAC, unless otherwise stated in writing, and relate only to these samples. FORM: SOC_GEN

Burlington WA | 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577 fax

Page 1 of 2

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

Clien	t Name: Walla Walla Basin V 810 S Main Street Milton-Freewater, O	Vatershe [,] R 97862		08-15517 Locker/Hall-Wetland				
	Froject:: Field ID: H- Sample Description: Ha Sampled By: Ba Sample Date: 10 Source Type: Sampler Phone:	3 ill-Wetland #3 iker /28/08			А	Lab N Repo Date An Date Exi A Peer F nalytical N	umber: rt Date: alyzed: tracted: Analyst: Review: Aethod:	046-32783 11/18/08 12/01/08 525X_081105 60 7 M 525.2 SOC for Walla Walla
CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COM	MENT
2312-35-8	PROPARGITE	ND	ug/L	0.5	-			
80-05-7	BISPHENOL-A	ND	ug/L	1	-			
60-51-5	DIMETHOATE	ND	ug/L	0.5	0.03			
57837-19-1	METALAXYL	ND	ug/L	0.1	-			
15299-99-7	NAPROPAMIDE	ND	ug/L	0.1	0.05			
122-34-9	SIMAZINE	ND	ug/L	0.1	0.03			
86-86-2	1-NAPHTHALENEACETAMIDE	ND	ug/L	0.5	-			
333-41-5	DIAZINON	ND	ug/L	0.1	0.04			
60168-88-9	FENARIMOL	ND	ug/L	0.1	0.03			
58-89-9	LINDANE (BHC - GAMMA)	ND	ug/L	0.1	0.03			
7786-34-7	MEVINPHOS	ND	ug/l	0.1	0.03			

ug/L

950-37-8

86-50-0

72-54-8

72-55-9

50-29-3

115-32-2

121-75-5

298-00-0

56-38-2

732-11-6

43121-43-3

68694-11-1

2921-88-2

AZINPHOS-METHYL

CHLORPYRIFOS

4,4-DDD

4,4-DDE

4,4-DDT

DICOFOL

MALATHION

PHOSMET

TRIADIMEFON

TRIFLUMIZOLE

METHIDATHINON

METHYL PARATHION

PARATHION-ETHYL

NOTES:

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommanded limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

0.5

0.1

0.1

0.1

0.1

1

0.1

0.5

0.1

0.5

0.1

1.0

0.5

0.12

0.04

0.02

0.02

0.03

0.05

0.1

0.05

0.07

1.0

0.5

ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

ND

If you have any questions concerning this report contact at the above phone number. FORM: SOC_gen.rpt

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COMMENT
88671-89-0	MYCLOBUTANIL	ND	ug/L	0.5	0.5	·····	
51235-04-2	HEXAZINONE	ND	ug/L	0.1	0.05		

NOTES: If a compound is detected > or = to the State Reporting Lavel, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Lavels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Dinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Burlington WA Corporate Office 1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 2

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

Client Nam	e: Walla Walla Basir 810 S Main Street Milton-Freewater,	n Watershe : OR 97862			Refere	ence Num Pro	ber: 08-15517 ect: Locker/Hall-Wetland
	Project:: Field ID:	H-2				Lab Num	ber: 046-32784
	Sample Description:	Hall-Wetland #2				Report D	ate: 11/18/08
	Sampled By:	Baker			D	ate Analy.	red: 12/01/08
	Sample Date:	10/28/08			Da	ate Extrac	ted: 525X_081105
	Source Type:					Ana	yst: CO
	Sampler Phone:					Peer Rev	iew: //M
					Anal	ytical Meti	iod: 925.2
							SOC for Walla Walla
CAS COM	IPOUND	RESULTS	UNITS	PQL	MDL	MCL C	OMMENT

PROPARGITE	ND	ug/L	0.5	-	
BISPHENOL-A	ND	ug/L	1	-	
DIMETHOATE	ND	ug/L	0.5	0.03	
METALAXYL	ND	ug/L	0.1	-	
NAPROPAMIDE	ND	ug/L	0.1	0.05	
SIMAZINE	ND	ug/L	0.1	0.03	
1-NAPHTHALENEACETAMIDE	ND	ug/L	0.5	-	
DIAZINON .	ND	ug/L	0.1	0.04	
FENARIMOL	ND	ug/L	0.1	0.03	
LINDANE (BHC - GAMMA)	ND	ug/L	0.1	0.03	
MEVINPHOS	ND	ug/l	0.1	0.03	
AZINPHOS-METHYL	ND	ug/L	0.5	0.12	
CHLORPYRIFOS	ND	ug/L	0.1	0.04	
4,4-DDD	ND	ug/L	0.1	0.02	
4,4-DDE	ND	ug/L	0.1	0.02	
4,4-DDT	ND	ug/L	0.1	0.03	
DICOFOL	ND	ua/L	1	-	
MALATHION	ND	ua/L	0.1	0.05	
METHYL PARATHION	ND	ug/L	0.5	0.1	
PARATHION-ETHYL	ND	ua/L	0.1	0.05	
PHOSMET	ND	_g/_	0.5	-	
TRIADIMEFON	ND	ug/L	0.0	0.07	
	ND	ug/L	10	10	
		ogre		1.0	
	PROPARGITE BISPHENOL-A DIMETHOATE METALAXYL NAPROPAMIDE SIMAZINE 1-NAPHTHALENEACETAMIDE DIAZINON FENARIMOL LINDANE (BHC - GAMMA) MEVINPHOS AZINPHOS-METHYL CHLORPYRIFOS 4,4-DDD 4,4-DDE 4,4-DDT DICOFOL MALATHION METHYL PARATHION PARATHION-ETHYL PHOSMET TRIADIMEFON TRIFLUMIZOLE	PROPARGITENDBISPHENOL-ANDDIMETHOATENDMETALAXYLNDNAPROPAMIDENDSIMAZINEND1-NAPHTHALENEACETAMIDENDDIAZINONNDFENARIMOLNDLINDANE (BHC - GAMMA)NDMEVINPHOSND4,4-DDDND4,4-DDEND4,4-DDINDUICOFOLNDMALATHIONNDPARATHION-ETHYLNDPHOSMETNDTRIADIMEFONNDTRIFLUMIZOLEND	PROPARGITENDug/LBISPHENOL-ANDug/LDIMETHOATENDug/LMETALAXYLNDug/LNAPROPAMIDENDug/LSIMAZINENDug/L1-NAPHTHALENEACETAMIDENDug/LDIAZINONNDug/LFENARIMOLNDug/LLINDANE (BHC - GAMMA)NDug/LMEVINPHOSNDug/LCHLORPYRIFOSNDug/L4,4-DDDNDug/L4,4-DDTNDug/LDICOFOLNDug/LMALATHIONNDug/LPARATHION-ETHYLNDug/LPHOSMETNDug/LTRIADIMEFONNDug/LTRIADIMEFONNDug/LTRIFUMIZOLENDug/L	PROPARGITENDug/L0.5BISPHENOL-ANDug/L1DIMETHOATENDug/L0.5METALAXYLNDug/L0.1NAPROPAMIDENDug/L0.1SIMAZINENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.5DIAZINONNDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHALENEACETAMIDENDug/L0.11-NAPHTHOSNDug/L0.14.4-DDDNDug/L0.14.4-DDTNDug/L0.11-ACIOFOLNDug/L0.11-ALATHIONNDug/L0.5PARATHION-ETHYLNDug/L0.5PARATHION-ETHYLNDug/L0.5PARATHION-ETHYLNDug/L0.5TRIADIMEFONNDug/L0.1TRIADIMEFONNDug/L0.1TRIADIMEND<	PROPARGITE ND ug/L 0.5 - BISPHENOL-A ND ug/L 1 - DIMETHOATE ND ug/L 0.5 0.03 METALAXYL ND ug/L 0.1 - NAPROPAMIDE ND ug/L 0.1 0.05 SIMAZINE ND ug/L 0.1 0.03 1-NAPROPAMIDE ND ug/L 0.1 0.03 ILNDANE (BHC - GAMMA) ND ug/L 0.1 0.03 MEVINPHOS ND ug/L 0.1 0.03 AZINPHOS-METHYL ND ug/L 0.1 0.02 4,4-DD ND ug/L 0.1 0.03 JLICOFOL ND<

NOTES: If a compound is detected > or = to the State Reparting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sadium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Page 1 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-15517 Report Date: 12/10/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-081103A	HARDNESS	73.3	69.5	mg/L	200.7	105	80-120	LFB	
515_081031	2,4 - D	1.87	2	uail	515 1	94	70-130	1 59	
	2,4 - DCAA (SURR)	101		%	515.1	0-1	70-130	LFD	
	2,4 DB	7.69	8	u a /L	515.1	96	70-130		
	2,4,5 - TP (SILVEX)	0.92	1	ua/I	515.1	02	70-130		
	2,4,5 T	0.91	1	ug/L	515 1	01	70-130		
	ACIFLUORFEN	1.04	1	un/l	515.1	104	70-130		
	BENTAZON	1.79	2	ug/t	515.1	004	70-130		
	CHLORAMBEN	0.73	1	uall	515 1	73	70-130		
	DALAPON	10.1	13	ug/E	515.1	70 70	70-130		
	DICAMBA	0.89	1	ug/L	515.1	20	70-130		
	DICHLORPROP	2.63	3	ug/L	515.1	88	70-130		
	DINOSEB	1.74	2	ugre	515.1	00	70-130		
	PENTACHLOROPHENOL	0.88	1	ug/L	515.1	07	70-130		
	PICLORAM	0.91	1	ugru	515.1	00	70-130		
	TOTAL (DCPA & Metabolites)	0.87	1	ug/L	515.1	21 97	70-130		
		0.01	•	uyın	013.1	07	70-130		
525_081105	1,3-DIMETHYL-2-NITROBENZENE (Surr)	79		%	525.2		70-130	LFB	
	4,4-DDD	1.2	1	ug/L	525.2	120	70-130	0, 0	
	4,4-DDE	1.12	1	ug/L	525.2	112	70-130		
	4,4-DDT -	1.09	1	ug/L	525.2	109	70-130		
	BISPHENOL-A	4.1	5	ug/L	525.2	82	85-115		
	DIAZINON	0.9	1	ug/L	525.2	90	70-130		
	LINDANE (BHC - GAMMA)	1.01	1	ug/L	525.2	101	70-130		
	PERYLENE-D12 (Surr)	94		%	525.2		70-130		
	PYRENE-D10 (Surr)	89		%	525.2		70-130		
	SIMAZINE	0.97	1	uq/L	525.2	97	70-130		
	TRIPHENYLPHOSPHATE (Surr)	120		%	525.2		70-130		
							100		
525X_081105	1-NAPHTHALENEACETAMIDE	2.07	2	ug/L	525.2	104	70-130	LFB	
	CHLORPYRIFOS	1.05	1	ug/L	525.2	105	70-130		
	DICOFOL	2.57	2	ug/L	525.2	129	70-130		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 2 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-15517 Report Date: 12/10/08

		*	Така						
Batch	Analyte	Regult	Value	Linian	****	%		QC	
525X_081105	FENARIMOL	1 29	1	Units		Recover	/ Limits	Qualifier Type*	Comment
	HEXAZINONE	1.26	1	ug/L	525,2	129	70-130	LFB	
	MALATHION	1.04	1	ug/L	525.2	120	70-130		
	METALAXYL	2.26	2	ug/L	525.2	104	70-130		
	METHIDATHINON	2.92	2	ug/L	525.2	110	70-130		
	MEVINPHOS	1.12	1	ugrt. vali	525.2	140	85-115	HR	
	MYCLOBUTANIL	2 43	2	ug/L	525.2	112	70-130		
	NAPROPAMIDE	1 16	1	ugre	525.2	122	85-115		
	PARATHION-ETHYL	1.05	1	ug/L	525.2	105	70-130		
	PHOSMET	2.68	2	ug/L	525.2	100	70-130		
	PROPARGITE	2.00	2	ug/L	525.2	134	70-130	HR	
	TRIADIMEFON	1.05	1	ug/L	525.2	112	85-115		
	TRIFLUMIZOLE	1.35	י י	ug/L	020.2	105	70-130		
		1.55	Z	ug/L	525.2	68	85-115	N1	
531_081031	3-HYDROXYCARBOFURAN	8	10	un/l	531 0	90	70 400	1 - 22 144	
	ALDICARB	7.9	10	ug/L	531.2	70	70-130	L-B	
	ALDICARB SULFONE	8.1	10	ug/L	521.2	79 01	70-130		
	ALDICARB SULFOXIDE	8.4	10	ug/L	521.2	01	70-130		
	BDMC (SURR)	85	10	0 <u>4</u>	531.2	04	70-130		
	CARBARYL	10	10	/0 U/(531.2	100	70-130		
	CARBOFURAN	8	10	ug/L	531.2	00	70-130		
	METHIOCARB	79	10	ug/c	531.2	00 70	70-130		
	METHOMYL	9.8	10	ug/L	531.2	79	70-130		
	OXYMAL	8	10	ug/L	531.2	90	70-130		
	PROPOXUR (BAYGON)	73	10	ug/L	531.2	6U 70	70-130		
		7.5	10	ug/L	531.2	73	70-130		
COD_081104	CHEMICAL OXYGEN DEMAND	49	50	mg/L	SM5220 D	98	80-120	LFB	
OPHOS-081029	ORTHO-PHOSPHATE	1.02	1.00	mg/L	SM4500-P F	102	7 0- 130	LFB	
tds_081029	TOTAL DISSOLVED SOLIDS	494	500	ma/L	SM2540 C	99	90.120	1 20	
ide 081020						00	50-120	LFD	
103_001028	TOTAL DISSOLVED SOLIDS	496	500	mg/L	SM2540 C	99	30-120	LFB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 3 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-15517 Report Date: 12/10/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
lds_081029	TOTAL DISSOLVED SOLIDS	498	500	mg/L	SM2540 C	100	80-120	LFB	
tds_081029	TOTAL DISSOLVED SOLIDS	500	500	mg/L	SM2540 C	100	80-120	LFB	

*Notation:

NA = Indicates % Recovery could not be calculated.

[%] Recovery = (Result of Analysis)/(True Value) * 100

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantitles of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Page 4 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Low Level Laboratory Fortified Blank

Reference Number: 08-15517 Report Date: 12/10/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recoverv	Limits	Qualifier Type*	Comment
531_081031	3-HYDROXYCARBOFURAN	0.6	1	ug/L	531.2	60	50-150	LFBD	oominicint
	ALDICARB	0.8	1	ug/L	531.2	80	50-150		
ALDIC ALDIC		0.6	1	ug/L	531.2	60	50-150		
	ALDICARB SULFOXIDE	0.8	1	ug/L	531.2	80	50-150		
	BDMC (SURR)	79		%	531.2		50-150		
	CARBARYL	0.8	1	ug/L	531.2	80	50-150		
	CARBOFURAN	0.6	1	ua/L	531.2	60	50-150		
	METHIOCARB	0.6	1	ua/L	531.2	60	50-100		
	METHOMYL	0.7	1	ua/L	531.2	70	50-150		
	OXYMAL	1	1	ua/L	531.2	100	50-160		
	PROPOXUR (BAYGON)	0.6	1	ug/L	531.2	60	50-150		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 5 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 08-15517 Report Date: 12/10/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-081103A	HARDNESS	ND		mg/L	200.7	<u>_</u>	10.0000	C LRB	
COD_081104	CHEMICAL OXYGEN DEMAND	ND		mg/L	SM5220 D		4.00000	LRB	
D081104A	BROMATE	ND		mg/L	300.1		0.00500	LRB	
1081029A	CHLORIDE NITRATE-N	ND ND		mg/L. mg/L.	300.0 300.0		0.10000 0.10000	LRB	
OPHOS-081029	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	LRB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

Page 6 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-15517 Report Date: 12/10/08

			eurT			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
200.7-081103A	HARDNESS	ND		mg/L	200.7	0.82000) MB	Comment
515 081031	24-D	ND						
		ND		ug/L	515.1	0.05000	MB	
	2 4 DB	96		%	515.1			
		ND		ug/L	515.1	0.25000)	
	2,4,5 - TP (SILVEX)	ND		ug/L	515.1	0.10000	•	
	2,4,5	ND		ug/L	515.1	0.10000		
	ACIFLUORFEN	ND		ug/L	515.1	0.50000		
	BENTAZON	ND		ug/L	515.1	0.12000		
	CHLORAMBEN	ND		ug/L	515.1	0.20000		
	DALAPON	ND		ug/L	515.1	0.50000		
	DCPA (ACID METABOLITES)	ND		ug/L	515.1	0.10000		
	DICAMBA	ND		ug/L	515.1	0.05000		
	DICHLORPROP	ND		ua/L	515.1	0 12000		
	DINOSEB	ND		ua/L	515.1	0.12000		
	PENTACHLOROPHENOL	ND		ua/I	515.1	0.0000		
	PICLORAM	ND		- <u>5</u> /-	515 1	0.02000		
	TOTAL (DCPA & Metabolites)	ND		uall	515.1	0.0000		
					0.0.1	0.02000		
525 081105								
020_001100	4 4 DDD	80		%	525.2		MB	
	4,4-000	ND		ug/L	525.2	0.05000		
	4,4-DDE	ND		ug/L	525.2	0.05000		
	4,4-DDT	ND		ug/L	525.2	0.05000		
	BISPHENOL-A	ND		ug/L	525.2	1.00000		
	DIAZINON	ND		ug/L	525.2	0.05000		
	LINDANE (BHC - GAMMA)	ND		ug/L	525.2	0.02000		
	PERYLENE-D12 (Surr)	85		%	525.2			
	PYRENE-D10 (Surr)	91		%	525.2			
	SIMAZINE	ND		ug/L	525.2	0.02000		
	TRIPHENYLPHOSPHATE (Surr)	117		%	525.2			
525X_081105	1-NAPHTHALENEACETAMIDE	ND		ug/L	525.2	0.10000	MB	
	AZINPHOS-METHYL	ND		ug/L	525.2	0.00000		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 7 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-15517 Report Date: 12/10/08

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Tyne*	Comment
525X_081105	CHLORPYRIFOS	ND		ug/L	525.2	0.000	0 MB	oonintent
	DICOFOL	ND		ug/L	525.2	0.000	00	
	DIMETHOATE	ND		ug/L	525.2	0.000	10	
	FENARIMOL	ND		ug/L	525.2	0.000	10	
	HEXAZINONE	ND		ug/L	525.2	0.000	-	
	MALATHION	ND		ug/L	525.2	0.0500	10	
	METALAXYL	ND		ug/L	525.2	0.1000	0	
	METHIDATHINON	ND		ug/L	525.2	0.5000	n	
	METHYL PARATHION	ND		ug/L	525.2	0.0000	0	
	MEVINPHOS	ND		ug/L	525.2	0.0000	n	
	MYCLOBUTANIL	ND		ug/L	525.2	0.5000	0	
	NAPROPAMIDE	ND		ua/L	525.2	0.0000	с П	
	PARATHION-ETHYL	ND		ua/L	525.2	0.0500	0	
	PHOSMET	ND		ua/L	525.2	0 1000	0	
	PROPARGITE	ND		ua/L	525.2	0.1000	n	
	TRIADIMEFON	ND		ua/L	525.2	0.0000	n	
	TRIFLUMIZOLE	ND		ug/L	525.2	1.0000	0	
531_081031	3-HYDROXYCARBOFURAN	ND		ua/L	531.2	0 5000		
	ALDICARB	ND		ua/L	531.2	0.0000) 1	
	ALDICARB SULFONE	ND		ua/L	531.2	0.2000	,	
	ALDICARB SULFOXIDE	ND		-0/L	531.2	0.2500)	
	BDMC (SURR)	110		%	531.2	0.2000)	
	CARBARYL	ND		ua/L	531.2	0.5000)	
	CARBOFURAN	ND		uo/L	531.2	0.5500	,	
	METHIOCARB	ND		ua/L	531.2	1.0000	ł	
	METHOMYL	ND		-a- ua/L	531.2	0.2500		
	OXYMAL	ND		uali	531.2	1.0000		
	PROPOXUR (BAYGON)	ND		uo/l	531.2	0.25000		
				-9.m	001.2	0.23000		
ec_081103	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B	2.50000	MB	
ec_081103	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B	2.50000	MB	
ec_081103	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B	2.50000	МВ	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 8 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-15517 Report Date: 12/10/08

_			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
ec_081103		ND		uS/cm	SM2510 B		2.50000	MB	
OPHOS-081029	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	МВ	
tds_081029	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
tds_081029	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
tds_081029	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
tds_081029	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
turb_081029	TURBIDITY	ND		NTU	180.1		0.02000	MB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 9 of 9

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 08-15517 Report Date: 12/10/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recover	y Limits	Qualifier Type*	Comment
200.7-081103A	MARDNESS	133	132.3	mg/L	200.7	101	80-120	QCS	
COD_081104	CHEMICAL OXYGEN DEMAND	125	133	mg/L	SM5220 D	94	80-120	QCS	
D081104A	BROMATE	0.0181	0.0182	mg/L	300.1	99	75-125	QCS	
ec_081103	ELECTRICAL CONDUCTIVITY	158	150.5	uS/cm	SM2510 B	105	80-120	QCS	
ec_081103	ELECTRICAL CONDUCTIVITY	158	150.5	uS/cm	SM2510 B	105	80-120	QCS	
ec_081103	ELECTRICAL CONDUCTIVITY	158	150.5	uS/cm	SM2510 B	105	80-120	QCS	
ec_081103	ELECTRICAL CONDUCTIVITY	158	150.5	uS/cm	SM2510 B	105	80-120	QCS	
1081029A	CHLORIDE NITRATE-N	30.4 2.58	30.0 2.50	mg/L mg/L	300.0 300.0	101 103	80-120 80-120	QCS	
OPHOS-081029	ORTHO-PHOSPHATE	0.47	0.49	mg/L	SM4500-P F	96	70-130	QCS	
ph_081029	HYDROGEN ION (pH)	7.97	8.00	pH Units	SM4500-H+ B	100	80-120	QCS	
ph_081029	HYDROGEN ION (pH)	8.05	8.00	pH Units	SM4500-H+ B	101	80-120	QCS	
turb_081029	TURBIDITY	0.95	1.00	NTU	180.1	95	70-130	QCS	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 1 of 5

QUALITY CONTROL REPORT

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Reference Number: 08-15517

Report Date: 12/10/2008

Duplicate

				Duplicate				QC	
Batch	Sample	Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
200.7-081103/	4				······································	······································	· · · · · ·		······································
	32853	HARDNESS	161	158	mg CaCO3/L	1.9	0-45	DUP	
	32892	HARDNESS	89.4	89.8	mg/L	0.4	0-45	DUP	
525_081105									
COD 081104									
-	33136	CHEMICAL OXYGEN DEMAND	13	15	ma/L	14.3	0-45	DUR	
	33163	CHEMICAL OXYGEN DEMAND	9	9	mg/L	0.0	0-45	פווס	
D081104A						0.0	0-10	50,	
	32565	BROMATE	0.0130	0.0126	ma/L	3.1	0-30		
EC 081103						0.1	0-30	DOP	
	32571	ELECTRICAL CONDUCTIVITY	514	512	uS/cm	0.4	0.45	0.10	
	32782	ELECTRICAL CONDUCTIVITY	122	122	uS/cm	0.4	0.45	DUP	
	33010	ELECTRICAL CONDUCTIVITY	7440	7390	uS/cm	0.0	0-40	DUP	
10810294						0.7	0-40	DUM	
1001023A	32775	NITRATE-N	10.8	10.8	mall		0.45		
	32775	CHLORIDE	71	71	mg/L	0.0	0-45	DUP	
	32817	CHLORIDE	68	68	mg/£	0.0	0-45	DUP	
	32853	CHLORIDE	17	1.8	mg/L	0.0	0-45	DUP	
00000-08102	a			1.0	ingr_	ə. <i>1</i>	0-40	DON	
011100-00102	32784		0.25	0.24					
DU 004020	02.04		0.25	0.24	ing/L	4.1	0-50	DUP	
PT_001029	30784	HYDROGEN ION (NU)	6 20	0.40					
	52104	ATDROGEN ION (PH)	0.30	0.42	pH Units	0.6	0-45	DUP	
105_081029	00574								
	32571	TOTAL DISSOLVED SOLIDS	516	519	mg/L	0.6	0-45	DUP	
	32/62		95	99	mg/L	4.1	0-45	DUP	
	32817	TOTAL DISSOLVED SOLIDS	554	552	mg/L	0.4	0-45	DUP	
TURB 081029									

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Splke (MS)/Matrix Splke Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Duplicate

Page 2 of 5 Reference Number: 08-15517 Report Date: 12/10/2008

			Duplicate				QC	
Batch	Sample Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
	32853 TURBIDITY	0.10	0.11	NTU	9.5	0-50	DUP	annon channai ann ann ann ann ann ann ann ann an

NA = Indicates %RPD could not be calculated

[%]RPD = Relative Percent Difference

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Spike

				Spike	Spike	Spike		Perce	nt Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MŞ	MSD	Límits	%RPD	Limits	Qualifier	Comments
200.7-081103/	۹.								····	**				
	32853	HARDNESS	161	230	229	69.5	mg CaCO3/L	. 99	98	80-120	1.5	0-60	LFM	
	32892	HARDNESS	89.4	158	162	69.5	mg/L	99	104	80-120	5.7	0-60	LFM	
515_081031														
	29825	2,4 - D	ND	1.69		2	ug/L	85	NA	65-135	NA	0-60	1 FM	
	29825	2,4,5 - TP (SILVEX)	ND	0.88		1	ug/L	88	NA	65-135	NA	0-60	LEM	
	29825	PENTACHLOROPHENOL	ND	0.78		1	ug/L	78	NA	65-135	NA	0-60	LEM	
	29825	DALAPON	ND	10.4		13	ug/L	80	NA	65-135	NA	0-60	LEM	
	29825	DINOSEB	ND	1.66		2	ug/L	83	NA	65-135	NA	0-60	1 FM	
	29825	PICLORAM	ND	1.13		1	ug/L	113	NA	65-135	NA	0-60	LEM	
	29825	DICAMBA	ND	0.83		1	ug/L	83	NA	65-135	NA	0-60		
	29825	TOTAL (DCPA & Metabolites)	ND	0.9		1	ug/L	90	NA	65-135	NA	0-60		
	29825	2,4 DB	ND	7.9		8	ug/L	99	NA	65-135	NA	0-60		
	29825	2,4,5 T	ND	0.93		1	ug/L	93	NA	65-135	NA	0-60	1 FM	
	29825	BENTAZON	ND	1.77		2	ug/L	89	NA	65-135	NΔ	0-60		
	29825	DICHLORPROP	ND	2.52		3	ug/L	84	NA	65-135	NΔ	0-60		
	29825	ACIFLUORFEN	ND	1		1	ug/L	100	NA	65-135	NΔ	0-60		
	29825	CHLORAMBEN	ND	0.75		1	ug/L	75	NA	65-135	NA	0-50	LEM	
	29825	2,4 - DCAA (SURR)	105	98			%		NA	70-130	NA	0-60		
	32909	2,4 - D	ND	1.75		2	mg/L	88	NA	65-135	NA	0-6D	LEM	
	32909	2,4,5 - TP (SILVEX)	ND	0.82		1	mg/L	82	NA	65-135	NA	0-60	1 5 1	
	32909	PENTACHLOROPHENOL	ND	0.78		1	ug/L	78	NA	65-135	NA	0-60	LEM	
	32909	DALAPON	ND	10.4		13	mg/L	80	NA	65-135	NA	0-60	LEM	
	32909	DINOSEB	ND	1.59		2	mg/L	80	NA	65-135	NA	0-60	LEM	
	32909	PICLORAM	ND	0.92		1	mg/L	92	NA	65-135	NA	0-60		
	32909	DICAMBA	ND	0.86		1	ug/L	86	NA	65-135	NA	0-60	LEM	
	32909	TOTAL (DCPA & Metabolites)	ND	0.9		1	ug/L	90	NA	65-135	NA	0-60	LEM	
	32909	2,4 DB	ND	7.37		8	ug/L	92	NA	65-135	NA	0-60		
	32909	2,4,5 T	ND	0.83		1	ug/L	83	NA	65-135	NA	0-60	1 5 4	
	32909	BENTAZON	ND	1.8		2	ug/L	90	NA	65-135	NA	0-60	L FM	
	32909	DICHLORPROP	ND	2.41		3	ug/L	80	NA	65-135	NA	0-60	LEM	
	32909	ACIFLUORFEN	ND	0.92		1	ug/L	92	NA	65-135	NA	0-60		
	32909	CHLORAMBEN	ND	0.73		1	ug/L	73	NA	65-135	NA	0-50	L 1 141	
	32909	2,4 - DCAA (SURR)	95	89			%		NA	70-130	NA	0-60		
525_081105													E1 (V)	
	32424	BISPHENOL-A	ND	5		5	ug/L	100	NA	70-130	NA	0-50	LFM	

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Spike

Page 4 of 5 Reference Number: 08-15517 Report Date: 12/10/2008

				Spike	Spike	Spike		Percen	Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
	32424	SIMAZINE	ND	1		1	ug/L	100	NA	70-130	NA	0-60	1	FM
	32424	DIAZINON	ND	0.93		1	ug/L	93	NA	70-130	NA	0-60	L	FM
	32424	LINDANE (BHC - GAMMA)	ND	0.97		1	ug/L	97	NA	70-130	NA	0-60	Ĺ	FM
	32424	4,4-DDD	ND	1.15		1	ug/L	115	NA	70-130	NA	0-60	L	FM
	32424	4,4-DDE	ND	1.12		1	ug/L	112	NA	70-130	NA	0-60	L	FM
	32424	4,4-DDT	ND	1.1		1	ug/L	110	NA	70-130	NA	0-60	L	FM
	32424	MALATHION	ND	1.23		1	ug/L	123	NA	70-130	NA	0-60	L	FM
	32424	PARATHION-ETHYL	ND	1.3		1	ug/L	130	NA	70-130	NA	0-60	L	FM
	32424	1,3-DIMETHYL-2-NITROBENZENE (Surr	80	79			%		NA	70-130	NA	0-60	L	FM
	32424	PYRENE-D10 (Suπ)	90	90			%		NA	70-130	NA	0-60	L	FM
	32424	PERYLENE-D12 (Surr)	91	99			%		NA	70-130	NA	0-60	L	FM
	32424	TRIPHENYLPHOSPHATE (Surr)	120	121			%		NA	70-130	NA	0-60	Ľ	FM
525X_081105														
	32424	PROPARGITE	ND	2.4		2	ug/L	120	NA	70-130	NA	0-50	t.	≂M
	32424	METALAXYL	ND	2.28		2	ug/L	114	NA	70-130	NA	0-50		EM .
	32424	NAPROPAMIDE	ND	1.16		1	ug/L	116	NA	70-130	NA	0-50	L	=M
	32424	1-NAPHTHALENEACETAMIDE	ND	2.26		2	ug/L	113	NA	70-130	NA	0-50	L	EM
	32424	FENARIMOL	ND	1.58		1	ug/L	158	NA	70-130	NA	0-50	Ē	-M
	32424	MEVINPHOS	ND	1.16		1	ug/L	116	NA	70-130	NA	0-50	- L	ĨM
	32424	CHLORPYRIFOS	ND	1.08		1	ug/L	108	NA	70-130	NA	0-50		
	32424	DICOFOL	ND	3.06		2	ug/L	153	NA	70-130	NA	0-50	HR I	
	32424	MALATHION	ND	1.15		1	ug/L	115	NA	70-130	NA	0-60		EM
	32424	PARATHION-ETHYL	ND	1.13		1	ug/L	113	NA	70-130	NA	0-60	- L	EM
	32424	PHOSMET	ND	3		2	ug/L	150	NA	70-130	NA	0-50	HR L	EM
	32424	TRIADIMEFON	ND	1.18		1	ug/L	118	NA	70-130	NA	0-50	L	
	32424	TRIFLUMIZOLE	ND	0.77		2	ug/L	39	NA	70-130	NA	0-50		EM
	32424	METHIDATHINON	ND	3.02		2	ug/L	151	NA	70-130	NA	0-50	HR 1	FM
	32424	MYCLOBUTANIL	ND	2.5		2	ug/L	125	NA	70-130	NA	0-50	-	
	32424	HEXAZINONE	ND	1.29		1	ug/L	129	NA	70-130	NA	0-50	- Li	-M
531_081031														
	31657	OXYMAL	ND	14.3	13	15	mg/L	95	87	70-130	9.5	0-50	11	FN.4
	31657	CARBOFURAN	ND	14	12.7	15	mg/L	93	85	70-130	9.7	0-50	11	TA CONTRACTOR OF THE CONTRACTOR OF TO OF T
	31657	ALDICARB SULFOXIDE	ND	15.6	14.7	15	mg/L	104	98	70-130	5.9	0-50	1	λ
	31657	ALDICARB SULFONE	ND	13.9	13.6	15	mg/L	93	91	70-130	2.2	0-50		т.
	31657	METHOMYL	ND	13.7	13	15	ug/L	91	87	70-130	5.2	0-50	11	
	31657	3-HYDROXYCARBOFURAN	ND	13.6	12.2	15	ug/L	91	81	70-130	10.9	0-50	1	M

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Spike

Page 5 of 5 Reference Number: 08-15517 Report Date: 12/10/2008

				Spike	Spike	Spike		Percent	Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
	31657	ALDICARB	ND	12.8	11.9	15	mg/L	85	79	70-130	7.3	0-50	LFM	······································
	31657	CARBARYL	ND	15.1	14.8	15	ug/L	101	99	70-130	2.0	0-50	LFM	
	31657	PROPOXUR (BAYGON)	ND	12.9	12	15	ug/L	86	80	70-130	7.2	0-50	LFM	
	31657	METHIOCARB	ND	13.4	11.7	15	ug/L	89	78	70-130	13.5	0-50	LFM	
	31657	BDMC (SURR)	77	98			%		NA	70-130	NA	0-50	LFM	
	32780	OXYMAL	ND	10.5		10	ug/L	105	NA	70-130	NA	0-50	LFM	
	32780	CARBOFURAN	ND	9.2		10	ug/L	92	NA	70-130	NA	0-50	LFM	
	32780	ALDICARB SULFOXIDE	ND	11.7		10	ug/L	117	NA	70-130	NA	0-50	LFM	
	32780	ALDICARB SULFONE	ND	10.7		10	ug/L	107	NA	70-130	NA	0-50	LFM	
	32780	METHOMYL	ND	10.2		10	ug/L	102	NA	70-130	NA	0-50	LFM	
	32780	3-HYDROXYCARBOFURAN	ND	9.4		10	ug/L	94	NA	70-130	NA	0-50	LFM	
	32780	ALDICARB	ND	9.4		10	ug/L	94	NA	70-130	NA	0-50	LFM	
	32780	CARBARYL	ND	11.3		10	ug/L	113	NA	70-130	NA	0-50	LFM	
	32780	PROPOXUR (BAYGON)	ND	8.5		10	ug/L	85	NA	70-130	NA	0-50	LFM	
	32780	METHIOCARB	ND	8.7		10	ug/L	87	NA	70-130	NA	0-50	LFM	
	32780	BDMC (SURR)	83	76			%		NA	70-130	NA	0-50	LFM	
COD 081104														
	32782	CHEMICAL OXYGEN DEMAND	ND	45	47	50	mg/L	90	94	80-120	4.3	0-60	LFM	
	32820	CHEMICAL OXYGEN DEMAND	ND	54	53	50	mg/L	108	106	80-120	1.9	0-60	LFM	
	33136	CHEMICAL OXYGEN DEMAND	13	67	66	50	mg/L	108	106	80-120	1.9	0-60	LFM	
	33163	CHEMICAL OXYGEN DEMAND	9	63	61	50	mg/L	108	104	80-120	3.8	0-60	LFM	
	33171	CHEMICAL OXYGEN DEMAND	ND	47	49	50	mg/L	94	98	80-120	4.2	0-60	LEM	
D081104A							-							
	31652	BROMATE	ND	0.010		0.010	ma/L	100		75-125	NA	0-60	LEM	
1081029A													E. 111	
	32775	NITRATE-N	10.8	30.1		20.00	ma/L	97	NA	80-120	NΔ	0-60	L EM	
	32775	CHLORIDE	7.1	28.5		20.00	ma/L	107	NA	80-120	NΔ	0-60	LEM	
	32817	CHLORIDE	68	69		1.00	ma/L	100	NA	80-120	NA	0-60	LEM	
	32853	NITRATE-N	ND	1.09		1.00	ma/L	109	NA	80-120	NΔ	0-60	LEM	
	32853	CHLORIDE	1.7	2.7		1.00	mo/L	100	NA	80-120	NA	0-00		
OPHOS-08102	9									20 120	110	0-00	r,€_1¥I	
	32784	ORTHO-PHOSPHATE	0.25	1.26	1.30	1.00	ma/L	101	105	70-130	3.9	0-50		
							···· ::: · ··· :: · ··· : · ··· : · · ··· : · · ··· : · · ··· : · ··· : · ··· : · ··· : : · ··· : : · ··· : : · ··· : : · ··· : : · ··· : : ·					- UU		

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Page 1 of 1

Qualifier Definitions

Reference Number: 08-15517 Report Date: 12/10/08

Qualifier	Definition
B1	The source of the contamination has been identified as a contaminate in the lab purified water. Data for this compound is suspect if reported.
HR	High QCS recovery due to increased detector response No sample dectections, therefore, no further action taken for this analysis set.
ME	Matrix spike shows a possible matrix induced bias. The LFB was within acceptance limits, results for this compound are suspect.
N1	Acceptance limits have not been established, the limits listed are for guidance only.

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.

•

4

QUALITY CONTROL REPORT SURROGATE REPORT

Reference Number: 08-15517 Report Date: 12/10/08

Lab No	Analyte	Result Qualifier	Units	Method	Limit
531_081031 32780	BDMC (SUBB)				
		83	%	531.2	
531_081031					
32781	BDMC (SURR)	79	%	531.2	
531 081031					
32782	BDMC (SUBB)	75			
		75	%	531.2	
515_081031					
32783	2,4 - DCAA (SURR)	96	%	515 1	Acceptance Banas is 70 420%
525_081105				0.0.1	Acceptance Range is 70 - 130%
32783	1,3-DIMETHYL-2-NITROBENZENE (Surr)	79	%	525.2	Acceptance Range is 70% to 130%
	PYRENE-D10 (Surr)	90	%		Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	84	%		Acceptance Range is 70% to 130%
531 081031	TRIPHENYLPHOSPHATE (Surr)	114	%		Acceptance Range is 70% to 130%
32783	BDMC (SURR)	75			
		75	. %	531.2	
515_081031					
32784	2,4 - DCAA (SURR)	94	0/	E1E 1	
525_081105		3-1	70	515.1	Acceptance Range is 70 - 130%
32784	1,3-DIMETHYL-2-NITROBENZENE (Surr)	80	%	525.2	Acceptance Pango is 70% to 120%
	PYRENE-D10 (Surr)	89	%	VLU.L	Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	82	%		Acceptance Range is 70% to 130%
	TRIPHENYLPHOSPHATE (Surr)	113	%		Acceptance Range is 70% to 130%
531_081031	- ,		<i></i>		Acceptance range is 70% to 130%
32784	BDMC (SURR)	81	%	531.2	

*Notation:

A surrogate is a pure compound added to a sample in the laboratory just before processing so that the overall efficiency of a method can be determined.

The Acceptance Limits (or Control Limits) approximate a 99% confidence interval around the mean recovery.

Page 1 of 1

15517	PQ.	-	§17	8-15:	0				
abels agree	Samples received in Chain of custody & I			and a second	e da s um n, av e - van - e da ae e -				
C satisfactory	Sample temp	523	8016261		NUV	(
Yes No N/A	し PS Custody seals intact	Time	Date	n an	eived by	Time Rec	Date	Y	Relinquished b
owbide, arc	troy, OcherQu	1				imail)	ude FAX or I	sipt Request (Must inclu	Sample Reco
Total Containers	1-4 BELECEDINE	Email:			FAX:	7382170	Phone: (Josef Raker	Sampled by:
									10
		<u> </u>] X X	A 25:1	128/001	N N	entlene	HALL - LU	- <u>7.41</u> 0
X 7	5 K]. 🏲	× .	0'40 X	0/28/08	F-53	nt land f	HALL-WE	- - - - - - - - - - - - - - - - - - -
6 No 525		X		0;20 X	1 29/22/01		045 # 3	Locher	6 / -3
6 DZ 2 GM 8	N W V	Х	کم م	N OF	- 10/28/by 9	Ň	065 年2	Locher	5 2-2
6 NO 525		R	X	50 X	10/28/03 5	\	0854	inacher	4 6-1
					•				ω
		X	XI IX				1 523 B	The set of	2 AV
		X	X X				Ukowine	- Cocker	
Special Instructions	Brom 525(1	COD	O-Ph Hard	Nitra	Matrix Date T	Grab/ Comp	ation		Field
er of	ate Iexaz 31	·····	os,pŀ ness	ieq.)	ncy (Phone Call F	Emerge		ber of containers.	4. Enter num
CO004495	inon		ł,Tui	(Je)	st (100% surchs	Ouicke		ple Location.	each sam
	e)		rb,Ec		rd	X Standa		o in analysis requests.	2. Be specifi
					ime Required	urn Around		ne per sample (Locatic	1. Use one li
Hand on 7	lequested that	alyses R	Ana						
805 W. Orchard Dr. Suite 4 Bellingham, WA 98225	Other	N N				Card#:		her/ Hall-weither	Project Loc
	CRA / CERCLA		5 /	A/E Expire	I M/C	🗌 Visa		· · · · · · · · · · · · · · · · · · ·	Email:
Burlington, WA 98233	lean Water Act			Attn;		P.O.#:		541.938-2170 FAX:	Phone;
1620 S. Walnut St	afe Drinking Water Act			FAX:		Phone:	Bakar	Bet Bawas -Tray 6	Attn:
ANALYTICAL	Regulatory Program	Chec	zip: 97862	st OR	Milton-Freewa	2 City:	R Zip: 9786	Milton-Freewast: O	City
		Ref #		eet	810 S Main Str	Address:		810 S Main Street	Ship Address:
	or Lab Use Only		d Counc	isin Watershee	Walla Walla Ba	Bill to:	tershed Cou	Walla Walla Basin Wat	Report to:
4,495	tions)	aded sec	plicable sh	complete all ap	St (Please	Reque	nalysis	f Custody / A	Chain o
Page of					L				
	L Starter				the states		STAL	N CON	1
	tour in the					127			

÷

January 28, 2009

Page 1 of 1

Mr. Troy Baker Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862

RE: 08-17751 - Locher Road Recharge Sites/Hall Wetland

Dear Mr. Troy Baker,

Your project: Locher Road Recharge Sites/Hall Wetland, was received on Wednesday December 17, 2008. The following comments are reported for your project:

Sample 37231 - BisPhenol-A was detected in the EPA Method 525.2 analysis, estimated at 1.7 ug/L.

If you have questions phone me at 800 755-9295.

Respectfully Submitted,

Lawrence J Henderson, PhD Director of Laboratories

Enclosures Data Report

Page 2 of 3 Reference Number: 08-17751 Report Date:1/28/09

Data Report

Sample Descr Lab Nu	iption: HW1 - Hall Wentland mber: 37233						Sam; Colle	ole Date: cted By:	12/16/ Unkno	08 wn	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	st Batch	Comment
E-10139	HYDROGEN ION (pH)	6.63			pH Units	1	SM4500-H+ B	12/17/08	мак	₽H_081217	
14797-55-8	NITRATE-N	1.75	0.100	0.015	mg/L	1	300.0	12/17/08	BJ	1081217A	
16887-00-6	CHLORIDE	2.5	0.1	0.012	mg/L	1	300.0	12/17/08	BJ	1081217A	
E-10173	TOTAL DISSOLVED SOLIDS	145	10	6	mg/L	1	SM2540 C	12/10/08	CCN	TDS_081219	
14265-44-2	ORTHO-PHOSPHATE	0.17	0.01	0.002	mg/L	1	SM4500-P F	12/17/08	50	OPHOS-081217	
E-10184	ELECTRICAL CONDUCTIVITY	171	10		uS/cm	1	SM2510 B	12/23/08	CCN	EC_081223	
E-10617	TURBIDITY	0.11	0.05	0.02	NTU	1	180.1	12/17/08	МАК	TUR8_081217	
15541-45-4	BROMATE	ND	- 0.005	0.0016	· mg/L	1	300.1	12/30/08	MVP	D081230A	
E-11778	HARDNESS	64.9	3.30	0.055	mg CaCO3/L	1	200.7	12/23/08	ÐJ	200.7-081223A	
E-10117	CHEMICAL OXYGEN DEMAND	ND	8	2	mg/L	1	SM5220 D	12/29/08	МАК	COD_081229	
Sample Descri	ption: HW2 - Hall Wentland						Samp	ole Date: 1	12/16/0	08	
Lab Nu	mber: 37234						Colle	cted By: l	Jnknov	wn	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Analys	st Batch	Comment
F-10139		6 54			n Hillaite						

E-10139	HYDROGEN ION (pH)	6.54			pH Units	1	SM4500-H+ B	12/17/08	MAK	PH_081217
14797-55-8	NITRATE-N	0.89	0.100	0.015	mg/L	1	300.0	12/17/08	BJ	1081217A
16887-00-6	CHLORIDE	2.4	0.1	0.012	mg/L	1	300.0	12/17/08	BJ	1081217A
E-10173	TOTAL DISSOLVED SOLIDS	149	10	6	mg/L	1	SM2540 C	12/19/08	CCN	TD5_081219
14265-44-2	ORTHO-PHOSPHATE	0.19	0.01	0.002	mg/L	1	SM4500-P F	12/17/08	SD	OPHOS-081217
E-10184	ELECTRICAL CONDUCTIVITY	186	10		uS/cm	1	SM2510 B	12/23/08	CCN	EC_081223

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested. PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

Page 3 of 3 Reference Number: 08-17751 Report Date:1/28/09

Data Report

E-10617	TURBIDITY	1.34	0.05	0.02	NTU	1	180.1	12/17/08	МАК	TURB_081217
15541-45-4	BROMATE	ND	0.005	0.0016	mg/L	1	300.1	12/30/08	MVP	D081230A
E-11778	HARDNESS	74.0	3.30	0.055	mg CaCO3/i	1	200.7	12/23/08	BJ	200.7-081223A
E-10117	CHEMICAL OXYGEN DEMAND	ND	8	2	mg/L	1	SM5220 D	12/29/08	MAK	COD_081229

Sample Descri Lab Nu	ption: HW3 - Hall Wentland mber: 37235						Samp Colle	ole Date: cted By:	12/16/ Unkno	08 Iwn		
CAS ID#	Parameter	Result	PQL	MDL	Unils	DF	Method	Analyzed	Алаіу	st Batch	Comment	
E-10139	HYDROGEN ION (pH)	6.58			pH Units	1	SM4500-H+ B	12/17/08	MAK	PH_081217		
14797-55-8	NITRATE-N	1.62	0.100	0.015	mg/L	1	300.0	12/17/08	ВJ	081217A		
16887-00-6	CHLORIDE	2.4	0.1	0.012	mg/L	t	300.0	12/17/08	BJ	1081217A		
E-10173	TOTAL DISSOLVED SOLIDS	133	10	6	mg/L	1	SM2540 C	12/19/08	CCN	TDS_081219		
14265-44-2	ORTHO-PHOSPHATE	0.16	0.01	0.002	mg/L	1	SM4500-P F	12/17/08	so	OPHOS-081217		-
E-10184	ELECTRICAL CONDUCTIVITY	169	10		uS/cm	١	SM2510 B	12/23/08	CCN	EC_081223		
E-10617	TURBIDITY	0.30	0.05	0.02	NTU	1	180.1	12/17/08	МАК	TURB_081217		
15541-45-4	BROMATE	ND	0.005	0.0016	mg/L	1	300.1	12/30/08	MVP	D081230A		
E-11778	HARDNESS	64.4	3.30	0.055	mg CaCO3/L	1	200.7	12/23/08	BJ	200.7-081223A		
E-10117	CHEMICAL OXYGEN DEMAND	ND	8	2	mg/L	1	SM5220 D	12/20/08	MAK	COD_081229		

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested. PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

.

۰.

Client Name: Walla Walla Basin Watershed Council

Milton-Freewater, OR 97862

810 S Main Street

 Burlington WA
 1620 S Walnut St - 98233

 Corporate Office
 800.755.9295 • 360.757.1400 • 360.757.1402fax

 Bellingham WA
 805 Orchard Dr Suite 4 - 98225

 Microbiology
 360.671.0688 • 360.671.1577fax

WSDOE Lab C1251

DATA REPORT

Page 1 of 1

Reference Number: 08-17751 Project: Locher Road Recharge Sites

Report Date: 1/28/09 Date Analyzed: 12/29/08 Analyst: CO Peer Review: 7/1 Analytical Method: 525.2 Batch: 525X_081222

Lab Number: 37233 Field ID: HW1 Sample Description: Hall Wentland Matrix: Water Sample Date: 12/16/08 Extraction Date: 12/22/08 Extraction Method: 3535

CAS	Compound	RESULT	Flag UNITS	PQL	MDL	D.F.	COMMENT .
			·····				
80-05-7	BISPHENOL-A	ND	ug/L	1		1.00)
60-51-5	DIMETHOATE	ND	ug/L	0.5	0.03	1.00	•
57837-19-	METALAXYL	ND	ug/L	0.1	-	1.00	
15299-99-	NAPROPAMIDE	ND	ug/L	0.1	0.05	1.00	I
86-86-2	1-NAPHTHALENEACETAMIDE	ND	ug/L	0.5	-	1.00	,
60168-88-	FENARIMOL	ND	иg/L	0.1	0.03	1.00	
7786-34-7	MEVINPHOS	ND	ug/l	0.1	0.03	1.00	
86-50-0	AZINPHOS-METHYL	ND	ug/L.	0.5	0.12	1.00	
2921-88-2	CHLORPYRIFOS	ND	ug/L	0.1	0.04	1.00	
115-32-2	DICOFOL	ND	ug/L	1	-	1.00	
298-00-0	METHYL PARATHION	ND	ug/L	0.5	0.1	1.00	
732-11-6	PHOSMET	ND 💀	ug/L	0.5	-	1.00	
43121-43-	TRIADIMEFON	ND	ug/L	0.1	0.07	1.00	
68694-11-	TRIFLUMIZOLE	ND	ug/L	1.0	1.0	1.00	
950-37-8	METHIDATHINON	ND	ug/L	0.5	0.5	1.00	
88671-89-	MYCLOBUTANIL	ND	ug/L	0.5	0.5	1.00	
51235-04-	HEXAZINONE	ND	ug/L	0.1	0.05	1.00	
2312-35-8	PROPARGITE	ND	ug/L		-	1.00	Qualitative analysis

Notes;

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

- ND indicates the compound was not detected above the PQL or MDL.
- PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor,

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 · 360.671.1577fax

Page 1 of 1

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

С	lient Name:	Walla Walla Basii	n Watershed	Council			Ref	erence N	lumber:	08-17751
		810 S Main Stree Milton-Freewater,	t OR 97862						Project:	Locher Road Recharge Sites/Ha
		Project:: Field ID: Sample Description: Sampled By: Sample Date: Source Type: Sampler Phone:	HW1 Hall Wentland Unknown 12/16/08				An	Lab N Repo Date An Date Ext A Peer F alytical M	lumber: rt Date: ialyzed: tracted: Analyst: Review: Method:	37233 1/7/09 12/23/08 525_081222 CO 9/1 525.2 SOC for Walla Walla
CAS	COMPO	DUND	RI	ESULTS	UNITS	PQL	MDL	MCL	COMM	AENT .
22-34-9	SIMAZII	NE	N	D	ug/L	0.1	0.030	4		
33-41-5	DIAZINO	DN	N	D	ug/L	0.1	0.035			
8-89-9	LINDAN	IE (BHC - GAMMA)	NI	D	ug/L	0.1	0.028	0.2		
2-54-8	4,4-DDD)	N	D	ua/L	0.1	0.024			

122-34-9	SIMAZINE	ND	ug/L	0.1	0.030	4
333-41-5	DIAZINON	ND	ug/L	0.1	0.035	
58-89-9	LINDANE (BHC - GAMMA)	ND	ug/L	0.1	0.028	0.2
72-54-8	4,4-DDD	ND	ug/L	0.1	0.024	
72-55-9	4,4-DDE	ND	ug/L	0.1	0.024	
50-29-3	4,4-DDT	ND	ug/L	0.1	0.022	
121-75-5	MALATHION	ND	ug/L	0.1	0.015	
56-38-2	PARATHION-ETHYL	ND	ug/L	0.1	0.022	

٠.,

NOTES: If a compound is delected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected); indicates that the parameter was not detected above the State Reporting Limit (SRL).

WSDOE Lab C1251

DATA REPORT

Page 1 of 1

Client Name:	Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862	Reference Number: Project:	08-17751 Locher Road Recharge Sites
	07004		

Report Date: 1/28/09 Date Analyzed: 12/29/08 Analyst: CO Peer Review: Jun Analytical Method: 525.2 Batch: 525X_081222

Lab Number:	37234
Field ID:	HW2
Sample Description:	Hall Wentland
Matrix:	Water
Sample Date:	12/16/08
Extraction Date:	12/22/08
Extraction Method:	3535

CAS	Compound	RESULT	Flag	UNITS	PQL	MDL.	D.F.	COMMENT
		·						
80-05-7	BISPHENOL-A	ND		ug/L	1		1.0	D
60-51-5	DIMETHOATE	ND		ug/L	0.5	0.03	1.0	0
57837-19-	METALAXYL	ND		ug/L	0.1	-	1.0	D
15299-99-	NAPROPAMIDE	ND		ug/L	0.1	0.05	1.0	0
86-86-2	1-NAPHTHALENEACETAMIDE	ND		ug/L	0.5	-	1.00	D
60168-88-	FENARIMOL	ND	•	ug/L	0.1	0.03	1.0(D
7786-34-7	MEVINPHOS	ND		ug/l	0.1	0.03	1.00	· · ·
86-50-0	AZINPHOS-METHYL	ND		ug/L	0.5	0.12	1.00	1
2921-88-2	CHLORPYRIFOS	ND		ug/L	0.1	0.04	1.00	3
115-32-2	DICOFOL	ND		ug/L	1	-	1.00	1
298-00-0	METHYL PARATHION	ND		ug/L	0.5	0.1	1.00	C
732-11-6	PHOSMET	ND M		ug/L	0.5	-	1.00	3
43121-43-	TRIADIMEFON	ND		ug/L	0.1	0.07	1.00)
68694-11-	TRIFLUMIZOLE	ND		ug/L	1.0	1.0	1.00	1
950-37-8	METHIDATHINON	ND		ug/L	0.5	0.5	1.00	1
88671-89-	MYCLOBUTANIL	ND		ug/L	0.5	0.5	1.00	1
51235-04-	HEXAZINONE	ND		ug/L	0.1	0.05	1.00)
2312-35-8	PROPARGITE	ND		ug/L		-	1.00	Qualitative analysis

Notes:

Flags are data qualifiers. If there are data qualifiers on your report definitions can be found on an accompanying sheet.

ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor.

If you have any questions concerning this report contact at the above phone number. $_{\mbox{Form: c608.rpt}}$

Burlington WA | 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 · 360.671.1577fax

Page 1 of 1

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

C	Client Name: Walla Walla Basi	n Watershed Council			Ref	ference N	umber:	08-17751
	810 S Main Stree Milton-Freewater	t OR 97862				F	Project:	Locher Road Recharge Sites/Ha
	Project:: Field ID: Sample Description: Sampled By: Sample Date: Source Type: Sampler Phone:	HW2 Hall Wentland Unknown 12/16/08			Ar	Lab N Repor Date Ana Date Ext A Peer F nalytical M	umber: t Date: alyzed: racted: nalyst: Review; lethod:	37234 1/7/09 12/23/08 525_081222 -CO 7/-1 525.2 SOC for Walla Walla
CAS	COMPOUND -	RESULTS	UNITS	PQL	MDL	MCL -	COMN	IENT
122-34-9	SIMAZINE	ND	ug/L	0.1	0.030	4		
333-41-5	DIAZINON	ND	ug/L	0.1	0.035			
58-89-9	LINDANE (BHC - GAMMA)	ND	ug/L	0.1	0.028	0.2		
72-54-8	4,4-DDD	ND	ug/L	0.1	0.024			

0.028 0.2
).024
).024
).022
0.015
).022

÷.,

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL. (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Extraction Date: 12/22/08

Extraction Method: 3535

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

WSDOE Lab C1251

DATA REPORT

Page 1 of 1

Client Name:	Walla Walla Basin Watershed Council	Reference Number:	08-17751
	810 S Main Street	Project:	Locher Road Recharge Sites
	Milton-Freewater, OR 97862		
Lab Number:	37235	Report Date:	1/28/09
Field ID:	HW3	Date Analyzed:	12/29/08
Sample Description:	Hall Wentland	Analyst:	ÇQ
Matrix:	Water	Peer Review:	M
Sample Date:	12/16/08	Analytical Method:	525.2

Batch: 525X_081222

CAS	Compound	RESULT	Flag	UNITS	PQL	MDL	D.F.	COMMENT
80-05-7	BISPHENOL-A	ND		ug/L	1		1.0	o
60-51-5	DIMETHOATE	ND		ug/L	0.5	0.03	1.0	0
57837-19-	METALAXYL	ND		ug/L	0.1	-	1.0	o
15299-99-	NAPROPAMIDE	ND		ug/L	0.1	0.05	1.0	o
86-86-2	1-NAPHTHALENEACETAMIDE	ND		ug/L	0.5	-	1.0	0
60168-88-	FENARIMOL	ND		ug/L	0.1	0.03	1.0	0
7786-34-7	MEVINPHOS	ND		ug/l	0.1	0.03	1.0	o
86-50-0	AZINPHOS-METHYL	ND		ug/L	0.5	0.12	1.0	0
2921-88-2	CHLORPYRIFOS	ND		ug/L	0.1	0.04	1.0	0
115-32-2	DICOFOL	ND		ug/L	1	-	1.0	D
298-00-0	METHYL PARATHION	ND		ug/L	0.5	0.1	1.0	o
732-11-6	PHOSMET	ND 💀	•	ug/L	0.5	-	1.0	D
43121-43-	TRIADIMEFON	ND		ug/L	0.1	0.07	1.0	0
68694-11-	TRIFLUMIZOLE	ND		ug/L	1.0	1.0	1.0	0
950-37-8	METHIDATHINON	ND		ug/L	0.5	0.5	1.0	D
88671-89-	MYCLOBUTANIL	ND		ug/L	0.5	0.5	1.0	D
51235-04-	HEXAZINONE	ND		ug/L	0.1	0.05	1.0	D
2312-35-8	PROPARGITE	ND		ug/L		-	1.0	0 Qualitative analysis

Notes:

Flags are data qualiflers. If there are data qualifiers on your report definitions can be found on an accompanying sheet. ND - indicates the compound was not detected above the PQL or MDL.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor.

4,4-DDT

MALATHION

PARATHION-ETHYL

121-75-5

56-38-2

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

SYNTHETIC ORGANIC COMPOUNDS (SOC) REPORT

Cli	ent Name: Walla Walla Basi	n Watershed Council			Ref	ference N	umber:	08-177	751		
	810 S Main Stree Milton-Freewater	t OR 97862				F	Project:	Locher	Road Rec	harge Sites/I	ł٤
	Project:: Field ID: Sample Description: Sampled By: Sample Date: Source Type: Sampler Phone:	HW3 Hall Wentland Unknown 12/16/08			Ar	Lab N Repor Date An: Date Ext A Peer F nalytical M	umber: t Date: alyzed: racted: nalyst: Review: lethod:	37235 1/7/09 12/23/ 525_00 CO 525.2) 08 81222	-	
CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COMM	IENT	*	.	1
122-34-9	SIMAZINE	ND	ug/L	0.1	0.030	4					
333-41-5	DIAZINON	ND	ug/L	0.1	0.035						
58-89-9	LINDANE (BHC - GAMMA)	ND	ug/L	0.1	0.028	0.2					
72-54-8	4,4-DDD	ND	ug/L	0.1	0.024						
72-55-9	4,4-DDE	ND	ug/L	0.1	0.024						
50-29-3	4,4-DDT	ND	ua/L	0.1	0.022						

0.1

0.1

0.1

0.022

0.015

0.022

ug/L

ug/L

ug/L

ND

ND

ND

NOTES:

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

 Burlington WA
 1620 S Walnut St - 98233

 Corporate Office
 800.755.9295 • 360.757.1
 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

HERBICIDES IN DRINKING WATER

Client Name:	Walla Walla Basir	n Watershe	Reference Number:	08-17751
	810 S Main Street	t	Project:	Locher Road Recharge Sites/Ha
	Milton-Freewater,	OR 97862		-
	Project::			
	Field ID:	HW1	Lab Number:	37233
	Sample Description:	Hall Wentland	Report Date:	1/6/09
	Sampled By:	Unknown	Date Analyzed:	12/31/08
	Sample Date:	12/16/08	Date Extracted:	515_081222
	Source Type:		Analyst:	၄၀
	Sampler Phone:		Peer Review:	YUY
			Analytical Method:	515.1
				Chlorophenoxy Herbicides
		······································		

CAS	COMPOUND	RESULTS	UNITS	PQL-	MDL	MCL	COMMENT
EPA R	egulated	·····					· · · · · · · · · · · · · · · · · · ·
94-75 - 7	2,4 - D	ND	ug/L	0.2	0.11	70	
93-72-1	2,4,5 - TP (SILVEX)	ND	ug/L	0.1	0.02	50	
87-86-5	PENTACHLOROPHENOL	ND	ug/L	0.1	0.044	1	
75-99-0	DALAPON	ND	ug/L	1.3	0.80	200	
88-85-7	DINOSEB	ND	ug/L	0.2	0.16	7	
1918-02-1	PICLORAM	ND	ug/L	0.1	0.089	500	
EPA U	nregulated						
1918-00-9	DICAMBA	ND	ug/L	0.1	0.045		
State L	Inregulated						
1861-32-1	TOTAL (DCPA & Metabolites)	ND	ug/L	0.1	0.089		
E-14028	DCPA (ACID METABOLITES)	ND	'ug/L	0.1	0.1		
94-82-6	2,4 DB	ND	ug/L	0.8	0.10		
93-76-5	2,4,5 T	ND	ug/L	0.1	0.044		
25057-89-0	BENTAZON	ND	ug/L	0.2	0.067		
120-36-5	DICHLORPROP	ND	ug/L	0.3	0.089		
50594-66-6	ACIFLUORFEN	ND	ug/L	0.1	0.089		
133-90 - 4	CHLORAMBEN	ND	ug/L	0.2	0.2		
51-36-5	3,5 - DICHLOROBENZOIC ACID	ND	ug/L	0.1	0.044		

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

 Burlington WA
 1620 S Walnut St - 98233

 Corporate Office
 800.755.9295 • 360.757.1

 Corporate Office
 800.755.9295 • 360.757.1400 • 360.757.1402tax

 Bellingham WA
 805 Orchard Dr Suite 4 - 98225
 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

HERBICIDES IN DRINKING WATER

Client Name:	Walla Walla Basir	n Watershe	Reference Number:	08-17751
	810 S Main Stree Milton-Freewater,	OR 97862	Project:	Locher Road Recharge Sites/Ha
	Project::			
	Field ID:	HW2	Lab Number:	37234
	Sample Description:	Hall Wentland	Report Date:	1/6/09
	Sampled By:	Unknown	Date Analyzed:	12/31/08
	Sample Date:	12/16/08	Date Extracted:	515_081222
	Source Type:		Analyst:	ço
	Sampler Phone:		Peer Review:	he
			Analytical Method:	I _{515.1}
	····			Chlorophenoxy Herbicides

CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COMMENT
EPA R	egulated				······································		
94-75-7	2,4 - D	ND	ug/L	0.2	0.11	70	
93-72-1	2,4,5 - TP (SILVEX)	ND	ug/L	0.1	0.02	50	
87-86-5	PENTACHLOROPHENOL	ND	ug/L	0.1	0.044	1	
75-99-0	DALAPON	ND	ug/L	1.3	0.80	200	
88-85-7	DINOSEB	ND	ug/L	0.2	0.16	7	-
1918-02-1	PICLORAM	ND	ug/L	0.1	0.089	500	
EPA Ur	regulated						
1918-00-9	DICAMBA	ND	ug/L	0.1	0.045		
State U	Inregulated						
1861-32-1	TOTAL (DCPA & Metabolites)	ND	ug/L	0.1	0.089		
E-14028	DCPA (ACID METABOLITES)	ND 11	ug/L	0.1	0.1		
94-82-6	2,4 DB	ND	ug/L	0.8	0.10		
93-76-5	2,4,5 T	ND	ug/L	0.1	0.044		
25057-89-0	BENTAZON	ND	ug/L	0.2	0.067		
120-36-5	DICHLORPROP	ND	ug/L	0.3	0.089		
50594-66-6	ACIFLUORFEN	ND	ug/L	0.1	0.089		
133-90-4	CHLORAMBEN	ND	ug/L	0.2	0.2		
51-36-5	3,5 - DICHLOROBENZOIC ACID	ND	ug/L	0.1	0.044		

NOTES: If a compound is detected > or = to the State Reporting Levet, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

HERBICIDES IN DRINKING WATER

Client Name: Walla Walla Basin Watershe Reference Number: 08-17751 810 S Main Street Project: Locher Road Recharge Sites/Ha Milton-Freewater, OR 97862 Project:: Field ID: HW3 Lab Number: 37235 Sample Description: Hall Wentland Report Date: 1/6/09 Sampled By: Unknown Date Analyzed: 12/31/08 Sample Date: 12/16/08 Date Extracted: 515 081222 Source Type: Analyst: CO Peer Review: Sampler Phone: Analytical Method: 1515.1 **Chlorophenoxy Herbicides**

CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COMMENT
EPA Re	egulated						
94-75-7	2,4 - D	ND	ug/L	0.2	0. 1 1	70	
93-72-1	2,4,5 - TP (SILVEX)	ND	ug/L	0.1	0.02	50	
37-86-5	PENTACHLOROPHENOL	ND	ug/L	0.1	0.044	1	
75-99-0	DALAPON	ND	ug/L	1.3	0.80	200	
38-85-7	DINOSEB	ND	ug/L	0.2	0.16	7	
1918-02-1	PICLORAM	ND	ug/L	0.1	0.089	500	
EPA Ur	nregulated						
1918-00-9	DICAMBA	ND	ug/L	0.1	0.045		
State U	Inregulated						
1861-32-1	TOTAL (DCPA & Metabolites)	ND	ug/L	0.1	0.089		
E-14028	DCPA (ACID METABOLITES)	ND	' ug/L	0.1	0.1		
94-82-6	2,4 DB	ND	ug/L	0.8	0.10		
3-76-5	2,4,5 T	ND	ug/L	0.1	0.044		
25057-89-0	BENTAZON	ND	ug/L	0.2	0.067		
20-36-5	DICHLORPROP	ND	ug/L	0.3	0.089		
60594-66-6	ACIFLUORFEN	ND	ug/L	0.1	0.089		
33-90-4	CHLORAMBEN	ND	ug/L	0.2	0.2		
51-36-5	3,5 - DICHLOROBENZOIC ACID	ND	ug/L	0.1	0.044		

NOTES:

NOTES. If a compound is delected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Burlington WA | 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

CARBAMATES IN DRINKING WATER

Client Name: Walla Walla Basin Watershe				Reference Number: 08-17751						
	810 S Main Street					I	Project:	Locher Road Recharge Sites/Ha		
	Milton-Freewater,	OR 97862								
	Project::							07000		
	Field ID:	HW1			37233					
	Sample Description:	Hall Wentland			12/22/08					
	Sampled By:	Unknown								
	Sample Date:	12/16/08				Date Ext	531_081217			
	Source Type:			Analyst:						
	Sampler Phone:					Peerl	Review:			
					A	nalytical N	vetuoa:	531.2		
								Carbamates		
CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COMN	/ENT		
EPA R	egulated									
23135-22-0	OXYMAL	ND	ug/L	1.0	0.3	200				
1563-66-2	CARBOFURAN	ND	ug/L	1.0	0.2	40				
EPA U	nregulated									
1646-87-3	ALDICARB SULFOXIDE	ND	ug/L	1.0	0.3					
1646-88-4	ALDICARB SULFONE	ND	ug/L	1.0	0.3					
16752-77-5	METHOMYL	ND	ug/L	1.0	0.3					
16655-82-6	3-HYDROXYCARBOFURAN	ND	ug/L	1.0	0.3					
116-06-3	ALDICARB	ND	ug/L	1.0	0.3					
63-25-2	CARBARYL	ND	ug/L	1.0	0.2					
0 1										
State U	Jnregulated - Uther									

1.0

1.0

ug/L

ug/L

0.4

0.3

114-26-1

2032-65-7

PROPOXUR (BAYGON)

METHIOCARB

ND

ND

NOTES: If a compound is delected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.016 mg/L for Lead and 1.3 mg/L for Copper. Sedium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DCH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 + 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

CARBAMATES IN DRINKING WATER

Clier	Client Name: Walla Walla Basin Watershe				Re	ference N	lumber:	: 08-17751		
	810 S Main Stree Milton-Freewater,	t OR 97862				ļ	Project:	Locher Road Recharge Sites/Ha		
	Project::									
	Field ID:	HW2				Lab N	lumber:	37234		
	Sample Description:	Hall Wentland				Repo	1/15/09			
	Sampled By:	Unknown				Date An	alyzed:	01/13/09		
	Sample Date:	12/16/08		Date Extracted:			531_090113			
	Source Type:					<i>F</i>	Analyst:	co		
	Sampler Phone:		Peer Review:			531 2				
							nethou.	Carbamates		
CAS	COMPOUND	RESULTS	UNITS	PQL	MDL	MCL	COM	/ENT		
EPA R	egulated	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
23135-22-0	OXYMAL	ND	ug/L	1.0	0.3	200				
1563-66-2	CARBOFURAN	ND	ug/L	1.0	0.2	40				
EPA U	nregulated									
1646-87-3	ALDICARB SULFOXIDE	ND	ug/L	1.0	0.3					
1646-88-4	ALDICARB SULFONE	ND	ug/L	1.0	0.3					
16752-77-5	METHOMYL	ND	ug/L	1.0	0.3					
6655-82-6	3-HYDROXYCARBOFURAN	ND	ug/L	1.0	0.3					
16-06-3	ALDICARB	ND	ug/L	1.0	0.3					
63-25-2	CARBARYL	ND	ug/L	1.0	0.2					
State l	Jnregulated - Other									
114-26-1	PROPOXUR (BAYGON)	ND	ug/L	1.0	0.4					
2032-65-7	METHIOCARB	ND	ug/L	1.0	0.3					

1

NOTES: If a compound is delected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may occur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office.

ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

CARBAMATES IN DRINKING WATER

Clie	nt Name:	Walla Walla Basi	n Watershe				Re	ference N	lumber:	08-17751		
		810 S Main Stree Milton-Freewater.	t OR 97862						Project:	Locher Road Recharge Sites/		
		Project::										
		Field ID:	HW3					Lab N	lumber:	37235		
		Sample Description:	Hall Wentland					Repo	rt Date:	1/15/09		
		Sampled By:	Unknown			Date Analyzed:				01/13/09		
		Sample Date:	12/16/08					Date Ex	tracted:	531_090113		
		Source Type:						ŀ	Analyst:	CO		
		Sampler Phone:			Peer Re			Review:	N: [+ ~ (
							Ai	nalytical N	/lethod:	531.2		
		·								Carbamates		
CAS	COMPO	DUND	R	ESULTS	UNITS	PQL	MDL	MCL	COM	IENT		
EPA F	Regulated	ł										
23135-22-0	OXYMA	L	Ni	D	ug/L	1.0	0.3	200				
1563-66-2	CARBO	FURAN	NI	D	ug/L	1.0	0.2	40				
EPA L	Inregulat	ed										
1646-87-3	ALDICA	RB SULFOXIDE	N	D	ug/L	1.0	0.3					
1646-88-4	ALDICA	RB SULFONE	NI	D	ug/L	1.0	0.3					
16752-77-5	METHO	MYL.	NI	D	ug/L	1.0	0.3					
16655-82-6	3-HYDR	OXYCARBOFURAN	NI	D	ug/L	1.0	0.3					
16-06-3	ALDICA	RB	N	D	ug/L	1.0	0.3					
63-25-2	CARBAI	RYL	N	D	ug/L	1.0	0.2					
State	Unregula	ited - Other										
14-26-1	PROPO	XUR (BAYGON)	N	D 📜	· ug/L	1.0	0.4					
2032-65-7	METHIC	CARB	N	D	ug/L	1.0	0.3					

2

NOTES: If a compound is detected > or = to the State Reporting Level, SRL, specified increased monitoring frequencies may accur per DOH. MCL (Maximum Contaminant Level) maximum permissible level of a contaminant in water established by EPA; Federal Action Levels are 0.015 mg/L for Lead and 1.3 mg/L for Copper. Sodium has a recommended limit of 20 mg/L. A blank MCL value indicates a level is not currently established. Trigger Level: DOH Drinking Water Response level. Systems with compounds detected in excess of this level are required to take additional samples. Contact your regional DOH office. ND (Not Detected): indicates that the parameter was not detected above the State Reporting Limit (SRL).

QUALITY CONTROL REPORT SURROGATE REPORT

Reference Number: 08-17751 Report Date: 01/28/09

Lab No	Analyte	Result Qualifier	Units	Method	Limit
515 081222		· :- : · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
37230	2.4 - DCAA (SURR)	94	%	515.1	Acceptance Range is 70 - 130%
525 081222					
37230	1,3-DIMETHYL-2-NITROBENZENE (Surr)	109	%	525.2	Acceptance Range is 70% to 130%
	PYRENE-D10 (Surr)	93	%		Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	109	%		Acceptance Range is 70% to 130%
	TRIPHENYLPHOSPHATE (Surr)	106	%		Acceptance Range is 70% to 130%
E4E 004000					
37221		04	0/.	515 1	Acceptance Panne is 70 - 130%
525 081222	2,4 * DCAA (SURR)	34	70	2121	Acceptance Natige is 70 - 150%
37231	1 3-DIMETHYL-2-NITROBENZENE (Sum)	109	%	525.2	Acceptance Range is 70% to 130%
0,20,	PYRENE-D10 (Surr)	93	%	OLOID	Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	102	%		Acceptance Range is 70% to 130%
	TRIPHENYLPHOSPHATE (Surr)	. 107	%		Acceptance Range is 70% to 130%
531_081217					
37231	BDMC (SURR)	118	%	531.2	
515_081222				10 4 57 A	
37232	2,4 - DCAA (SURR)	88	%	515.1	Acceptance Range is 70 - 130%
525_081222		102	0/	595.0	Accelerate Bases in 70% in 120%
37232	1,3-DIMETRYL-2-NITROBENZENE (SUIT)	103	70 94	525.2	Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	109	%		Acceptance Range is 70% to 130%
	TRIPHENYLPHOSPHATE (Surr)	110	%		Acceptance Range is 70% to 130%
531_081217					
37232	BDMC (SURR)	110	%	531.2	
515_081222					
37233	2,4 - DCAA (SURR)	97	%	515.1	Acceptance Range is 70 - 130%
525_081222					
37233	1,3-DIMETHYL-2-NITROBENZENE (Surr)	99	%	525.2	Acceptance Range is 70% to 130%
	PTRENE-DTU (SUIT) DEDVI EME D12 (Suit)	94	% 9/		Acceptance Range is 70% to 130%
	TRIPHENYI PHOSPHATE (Surr)	102	%		Acceptance Range is 70% to 130%
531 081217					
37233	BDMC (SURR)	116	%	531.2	
515_081222					
37234	2,4 - DCAA (SURR)	91	%	515.1	Acceptance Range is 70 - 130%
525_081222					
37234	1,3-DIMETHYL-2-NITROBENZENE (Surr)	102	%	525.2	Acceptance Range is 70% to 130%
	PYRENE-D10 (Surr)	92	%		Acceptance Range is 70% to 130%
	TRIPHENVI RHOSPHATE (Sum)	100	% %		Acceptance Range is 70% to 130%
531 000113	INFIERTEFTOSFTATE (Sul)	105	70		Acceptance Mange is 10 % to 130 %
37234	BDMC (SURR)	107	%	531.2	
515 081222					
37235	2,4 - DCAA (SURR)	95	%	515.1	Acceptance Range is 70 - 130%
525_081222	· • •				
37235	1,3-DIMETHYL-2-NITROBENZENE (Surr)	106	%	525.2	Acceptance Range is 70% to 130%
	PYRENE-D10 (Surr)	88	%		Acceptance Range is 70% to 130%
	PERYLENE-D12 (Surr)	103	%		Acceptance Range is 70% to 130%
F04 000440	TRIPHENYLPHOSPHATE (Surr)	106	%		Acceptance Range is 70% to 130%
031_090113		417	87	591.0	
31233		117	70	031.2	

*Notation:

A surrogate is a pure compound added to a sample in the laboratory just before processing so that the overall efficiency of a method can be determined.

.

The Acceptance Limits (or Control Limits) approximate a 99% confidence interval around the mean recovery.

Page 1 of 1

~

Page 1 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-081223A	HARDNESS	71.3	69.5	mg/L	200.7	103	80-120	LFB	
515_081222	2,4 - D	1.61	2	ug/L	515.1	81	70-130	LFB	
	2,4 - DCAA (SURR)	100		%	515.1		70-130		
	2,4 DB	7.25	8	ug/L	515.1	91	70-130		
	2,4,5 - TP (SILVEX)	0.88	1	ug/L	515.1	88	70-130		
	2,4,5 T	0.79	1	ug/L	515.1	7 9	70-130		
	ACIFLUORFEN	0.72	1	ug/L	515.1	72	70-130		
	BENTAZON	1.7	2	ug/L	515.1	85	70-130		
	CHLORAMBEN	0.98	1	ug/L	515.1	98	70-130		
	DALAPON	15.3	13	ug/L	515.1	118	70-130		
	DICAMBA	0.86	1	ug/L	515.1	86	70-130		
	DICHLORPROP	2.63	3	ug/L	515.1	88	70-130		
	DINOSEB	1.69	2	ug/L	515.1	85	70-130		
	PENTACHLOROPHENOL	0.92	1	ug/L	515.1	92	70-130		
	PICLORAM	0.97	1	ug/L	515.1	97	70-130		
	TOTAL (DCPA & Metabolites)	1.34	1	ug/L	515.1	134	70-130	HQ	
525 081222		100		P/	505 0		70.400		
<u>-</u>	4 4-nnn	100	4	70	525.2	100	70-130	LFB	
	4 4-000	1	1	ug/L	525.2	100	70-130		
	4 4-DDE	4 14 1	1	ug/L	525.2	100	70-130		
	4 4-DDE	1	1	ug/L	525.2	100	70-130		
	4 4-DDT	1 10	1	ug/L.	525.2	100	70-130		
	4 4-DDT	1.12	4	ug/L	525.2	112	70-130		
		1.14	1	ug/L	525.2	112	70-130		
	ALACHLOR	1.11	1 2	ug/L	525.2	111	70-130		
	ALDRIN	2.27	4	ug/L	525.2	114	70-130		
	ANTHRACENE	1.00	1 -1	ug/L	525.2	98 -	70-130		
	ATRAZINE	1.00	1	ug/L	525.2	106	70-130		
	BENZ(A)ANTHRACENE	2.00 1 00	۲ ۲	ug/L	020.2	00	70-130		
	BENZO(A)PYRENE	1.09 0.06	। न	ug/L.	020.2 505.0	109	70-130		
	BENZO(B)ELUORANTHENE	1.05	1	ug/L	525.2	90	70-130		
	BENZO(G H I)PERYLENE	1.00	1	ug/L	020.2 505.0		70-130		
	سوالا المتراس والأفار المكرك محسب تستعد	V.02	1	ug/L	J23.2	ŏΖ	70-130		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 2 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
525_081222	BENZO(K)FLUORANTHENE	1.04	1	ug/L	525.2	104	70-130	LFB	·····
	BENZYL BUTYL PHTHALATE	1.14	1	ug/L	525.2	114	70-130		
	BROMACIL	1.05	1	ug/L	525.2	105	70-130		
	BUTACHLOR	1.13	1	ug/L	525.2	113	70-130		
	CHLORDANE, TECHNICAL	1.04	1	ug/L	525.2	104	70-130		
	CHRYSENE	1.09	1	ug/L	525.2	109	70-130		
	CYANAZINE	2.13	2	ug/L	525.2	107	70-130		
	DI(ETHYLHEXYL)-ADIPATE	1.09	1	ug/L	525.2	109	70-130		
	DI(ETHYLHEXYL)-PHTHALATE	1.4	1	ug/L	525.2	140	70-130	AC	
	DIAZINON	3.12	3	ug/L	525.2	104	70-130		
	DIAZINON	3.12	3	ug/L	525.2	104	70-130		
	DIBENZO(A,H)ANTHRACENE	0.92	1	ug/L	525.2	92	70-130		
	DIELDRIN	1.18	1	ug/L	525.2	118	70-130		
	DIETHYL PHTHALATE	1.2	1	uq/L	525.2	120	70-130		
	DIMETHYL PHTHALATE	1.11	1	ua/L	525.2	111	70-130		
	DI-N-BUTYL PHTHALATE	1.15	1	ug/L	525.2	115	70-130		
	ENDRIN	1.06	1	υα/L	525.2	106	70-130		
	EPTC	1.14	1	ua/L	525.2	114	70-130		
~	FLUORENE	1.16	1	ua/L	525.2	116	70-130		
	HEPTACHLOR	1.02	1	ua/L	525.2	102	70-130		
	HEPTACHLOR EPOXIDE	1.11	1	ua/L	525.2	111	70-130		
	HEXACHLOROBENZENE	1.12	1	uo/L	525.2	112	70-130		
	HEXACHLOROCYCLO-PENTADIENE	1.13	1	ua/L	525.2	113	70-130		
	INDENO(1,2,3-CD)PYRENE	0.91	1	ua/L	525.2	91	70-130		
	LINDANE (BHC - GAMMA)	1.01	1	-5 ua/L	525.2	101	70-130		
	LINDANE (BHC - GAMMA)	1.01	1		525.2	101	70-130		
	MALATHION	2.15	2	unli	525.2	108	70-100		
	MALATHION	2.15	2	- <u>s</u>	525.2	108	70-130		
	METHOXYCHLOR	1.09	-	ug/L	525.2	100	70-130		
	METOLACHLOR	1.15	1	-3/~ U0/}	525.2	115	70 120		
	METRIBUZIN	0.82	1	ug/L	525.2	82	70-130		
	PARATHION	2.39	2	ug/L	525.2	120	70-130		
	PARATHION-ETHYL	2.39	2	ug/u	525.2	120	70-130		
	PENTACHLOROPHENOL	4.99	4	ug/L	525.2	120	70-130		
	PERYLENE-D12 (Surr)	95		0 <u>9</u> 72	525.2	120	70 120		
	PHENANTHRENE	1 11	1	/0 //	575 2	444	70-130		
		1.11		uy/L	525.Z	111	70-130		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 3 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
525_081222	PROPACHLOR	1.21	1	ug/L	525.2	121	70-130	LFB	********
	PYRENE	1.11	1	ug/L	525.2	111	70-130		
	PYRENE-D10 (Surr)	90		%	525.2		70-130		
	SIMAZINE	1.04	1	ug/L	525.2	104	70-130		
	SIMAZINE	1.04	1	ug/L	525.2	104	70-130		
	TERBACIL	1.07	1	ug/L	525.2	107	70-130		
	TRIFLURALIN	1.15	1	ug/L	525.2	115	70-130		
	TRIPHENYLPHOSPHATE (Surr)	105		%	525.2		70-130		
525X_081222	1-NAPHTHALENEACETAMIDE	2.1	2	μα/L	525.2	105	70-130	I ER	
	AZINPHOS-METHYL	1.1	1	ug/L	525.2	110	70-130	470	
	CHLORPYRIFOS	3.6	3	un/l	525.2	120	70-130		
	DICOFOL	3.5	3	-g/- 110/l	525.2	117	70-130		
	DIMETHOATE	0.7	1	ua/i.	525.2	70	70-130		
	FENARIMOL	1.9	2	ua/L	525.2	95	70-130		
	HEXAZINONE	1	1	- <u>-</u>	525.2	100	70-130		
	HEXAZINONE (Velpar)	1	1	ua/L	525.2	100	70-130		
	METALAXYL	2.2	2	ug/L	525.2	110	70-130		
	METHIDATHINON	3.4	2	ug/L	525.2	170	85-115		
	METHYL PARATHION	1.6	2	ug/L	525.2	80	70-130		
	MEVINPHOS	2.5	2	uq/L	525.2	125	70-130		
	MYCLOBUTANIL	2.4	2	ug/L	525.2	120	85-115		
	NAPROPAMIDE	1.08	1	ug/L	525.2	108	70-130		
	PHOSMET	3.3	2	ug/L	525.2	165	70-130	N1	
	PROPARGITE	3.5	2	ug/L	525.2	175	85-115	N1	
	TRIADIMEFON	2.45	2	ug/L	525.2	123	70-130		
	TRIFLUMIZOLE	2.3	2	ug/L	525.2	115	85-115		
525X_081222	1-NAPHTHALENEACETAMIDE	2.5	2	ug/L	525.2	125	70-130	LFB	
	AZINPHOS-METHYL	1.5	1	ug/L	525.2	150	70-130	HQ	
	CHLORPYRIFOS	3.7	3	ug/L	525.2	123	70-130		
	DICOFOL	3.5	3	ug/L	525.2	117	70-130		
	DIMETHOATE	0.8	1	ug/L	525.2	80	70-130		
	FENARIMOL	2.3	2	ug/L	525.2	115	70-130		
	HEXAZINONE	1.2	1	ug/L	525.2	120	70-130		
	HEXAZINONE (Velpar)	1.2	1	ug/L	525.2	120	70-130		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 4 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
525X_081222	METALAXYL	2.3	2	ug/L	525.2	115	70-130	LFB	
	METHIDATHINON	3.8	2	ug/L	525.2	190	85-115	N1	
	METHYL PARATHION	1.6	2	ug/L	525.2	80	70-130		
	MEVINPHOS	2.8	2	ug/L	525.2	140	70-130	HQ	
	MYCLOBUTANIL	2.7	2	ug/L	525.2	135	85-115	N1	
	NAPROPAMIDE	1.1	1	ug/L	525.2	110	70-130		
	PHOSMET	3.3	2	ug/L	525.2	165	70-130	N1	
	PROPARGITE	3.5	2	ug/L	525.2	175	85-115	N1	
	TRIADIMEFON	2.3	2	ug/L	525.2	115	70-130		
	TRIFLUMIZOLE	2.3	2	ug/L	525.2	115	85-115		
531_081217	3-HYDROXYCARBOFURAN	11.4	10	uoň	531.2	114	70 130		
	ALDICARB	11.3	10	ual	531.2	113	70-120	LLD	
	ALDICARB SULFONE	11.2	10	ug/L	531.2	112	70-130		
	ALDICARB SULFOXIDE	10.8	10	ug/2	531.2	108	70-130		
	BDMC (SURR)	101		%	531.2	100	70-130		
	CARBARYL	11.3	10	un/l	531.2	113	70-120		
	CARBOFURAN	10.4	10	ug/L	531.2	104	70 120		
	METHIOCARB	10,4	10	- <u>9</u> ,+	531.2	104	70-130		
	METHOMYL	11	10	uo/l	531.2	110	70-130		
	OXYMAL	10.6	10	ug/L	531.2	106	70-130		
	PROPOXUR (BAYGON)	11.1	10	ug/L	531.2	111	70-130		
531_081217	3-HYDROXYCARBOFURAN	17.4	20	ug/L	531.2	87	70-130	LEB	
	ALDICARB	18	20	ug/L	531.2	90	70-130		
	ALDICARB SULFONE	17.7	20	ug/L	531.2	89	70-130		
	ALDICARB SULFOXIDE	17.6	20	ug/L	531.2	88	70-130		
	BDMC (SURR)	97		%	531.2		70-130		
	CARBARYL	18.5	20	ug/L	531.2	93	70-130		
	CARBOFURAN	16.9	20	ug/L	531.2	85	70-130		
	METHIOCARB	19.5	20	ug/i.	531.2	98	70-130		
	METHOMYL	18	20	ug/L	531.2	90	70-130		
	OXYMAL	17.3	20	ug/L	531.2	87	70-130		
	PROPOXUR (BAYGON)	18.1	20	- ua/L	531.2	91	70-130		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 5 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recover	/ Limits	Qualifier Type*	Comment
531_090113	BDMC (SURR)	113		%	531.2	·····	70-130	LFB	······
531_090113	3-HYDROXYCARBOFURAN	21.6	20	ug/L	531.2	108	70-130	LFB	
	ALDICARB	21.6	20	ug/L	531.2	108	70-130		
	ALDICARB SULFONE	21.2	20	ug/L	531.2	106	70-130		
	ALDICARB SULFOXIDE	21.3	20	ug/L	531.2	107	70-130		
	BDMC (SURR)	89		%	531.2		70-130		
	CARBARYL	21.2	20	ug/L	531.2	106	70-130		
•	CARBOFURAN	19.6	20	ug/L	531.2	98	70-130		
	METHIOCARB	17.3	20	ug/L	531.2	87	70-130		
	METHOMYL	21.7	20	ug/L	531.2	109	70-130		
	OXYMAL	20.6	20	ug/L	531.2	103	70-130		
	PROPOXUR (BAYGON)	21.1	20	ug/L	531.2	106	70-130		
COD_081229	CHEMICAL OXYGEN DEMAND	55	50	mg/L	SM5220 D	110	80-120	LFB	
OPHOS-081217	ORTHO-PHOSPHATE	1.01	1.00	mg/L	SM4500-P F	101	70-130	LFB	
tds_081219	TOTAL DISSOLVED SOLIDS	514	500	mg/L	SM2540 C	103	80-120	LFB	
lds_081219	TOTAL DISSOLVED SOLIDS	500	500	mg/L	SM2540 C	100	80-120	LFB	
ds_081219	TOTAL DISSOLVED SOLIDS	494	500	mg/L	SM2540 C	99	80-120	LFB	
ds_081219	TOTAL DISSOLVED SOLIDS	472	500	mg/L	SM2540 C	94	80-120	LFB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 6 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Low Level Laboratory Fortified Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recove	y Limits	Qualifier Type*	Comment
531_081217	3-HYDROXYCARBOFURAN	0.73	1	ug/L	531.2	73	50-150	LFBD	
	ALDICARB	0.99	1	ug/L	531.2	99	5 0-1 50		
	ALDICARB SULFONE	0.95	1	ug/L	531.2	95	50-150		
	ALDICARB SULFOXIDE	0.86	1	ug/L	531.2	86	50-150		
	BDMC (SURR)	91		%	531.2		50-150		
	CARBARYL	1.1	1	ug/L	531.2	110	50-150		
	CARBOFURAN	0.89	1	ug/L	531.2	89	50-150		
	METHIOCARB	1.1	1	ug/L	531.2	110	50-150		
	METHOMYL	0.81	1	ug/L	531.2	81	50-150		
	OXYMAL	0.96	1	ug/L	531.2	96	50-150		
	PROPOXUR (BAYGON)	0.99	1	ug/L	531.2	99	50-150		
531_090113	3-HYDROXYCARBOFURAN	1.1	1	ua/L	531.2	110	50-150	I FBD	
	ALDICARB	1.15	1	ua/L	531.2	115	50-150	2.00	
	ALDICARB SULFONE	0.95	1	ua/L	531.2	95	50-150		
	ALDICARB SULFOXIDE	0.97	1	ua/L	531.2	97	50-150		
	BDMC (SURR)	113		%	531.2	-	50-150		
	CARBARYL	1.16	1	μα/L	531.2	116	50-150		
	CARBOFURAN	0.96	1	ua/L	531.2	96	50-150		
	METHIOCARB	1.13	1	uali	531.2	113	50-150		
	METHOMYL	1	1	ua/I	531.2	100	50-150		
	OXYMAL	0.93	1	ຼຼອງ ມດ/I	531.2	93	50-150		
	PROPOXUR (BAYGON)	0.95	1	ug/L	531.2	95	50-150		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

Page 7 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type	Comment
200.7-081223A	HARDNESS	ND		mg/L	200.7 *		10.0000	C LRB	
COD_081229	CHEMICAL OXYGEN DEMAND	ND		mg/L	SM5220 D		4.00000	LRB	
D081230A	BROMATE	ND		mg/L	300.1		0.00500	LRB	
1081217A	CHLORIDE NITRATE-N	ND ND		mg/L mg/L	300.0 300.0		0.10000 0.10000	LRB	
OPHOS-081217	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	LRB	
TURB_081217	TURBIDITY	ND		NTU	180.1		0.02000	LRB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

Page 8 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
200.7-081223A	HARDNESS	ND		mg/L	200.7	0.8200	0 MB	
515_081222	2,4 - D	ND		ug/L	515.1	0.0500	0 MB	
	2,4 - DCAA (SURR)	95		%	515.1			
	2,4 DB	ND		ug/L	515.1	0.2500	0	
	2,4,5 - TP (SILVEX)	ND		ua/L	515.1	n 1000	n	
	2,4,5 T	ND		ua/L	515.1	0.1000	n	
	ACIFLUORFEN	ND		ug/L	515.1	0.5000	n	
	BENTAZON	ND		ua/L	515.1	0.0000	n	
	CHLORAMBEN	ND		ug/L	515.1	0.2000	5	
	DALAPON	ND		ua/L	515.1	0.5000	5	
	DCPA (ACID METABOLITES)	ND		ua/L	515.1	0.1000	, 1	
	DICAMBA	ND		ug/L	515.1	0.0500	, 1	
	DICHLORPROP	ND		ug/L	515.1	0.1200)	
	DINOSEB	ND		ua/L	515.1	0.1000)	
	PENTACHLOROPHENOL	ND		ua/L	515.1	0.0200)	
	PICLORAM	ND		ug/L	515.1	0.0500)	
	TOTAL (DCPA & Metabolites)	ND		ug/L	515.1	0.0200	}	
				•	,		-	
525_081222	1,3-DIMETHYL-2-NITROBENZENE (Surr)	106		%	525.2		MB	
	4,4-DDD	ND		ua/L	525.2	0.05000)	
	4,4-DDD	NĎ		ua/L	525.2	0.05000	1	
	4,4-DDE	ND		ug/L	525.2	0.05000)	
	4,4-DDE	ND		ug/L	525.2	0.05000)	
	4,4-DDT	ND		ua/L	525.2	0.05000		
	4,4-DDT	ND		ua/L	525.2	0.05000		
	ACENAPHTHENE	ND		ua/L	525.2	0.05000		
	ALACHLOR	ND		ua/L	525.2	0.02000		
	ALDRIN	ND		ua/L	525.2	0.05000	ł	
	ANTHRACENE	ND		ua/L	525.2	0.05000	' - I	
	ATRAZINE	ND		ua/L	525.2	0.02000		
	BENZ(A)ANTHRACENE	ND		ua/L	525.2	0.02000		
	BENZO(A)PYRENE	ND		ug/L	525.2	0.02000 0.02000		
	BENZO(B)FLUORANTHENE	ND		ug/L	525.2	0.05000		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 9 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
525_081222	BENZO(G,H,I)PERYLENE	ND		ug/L	525.2	0.0500	0 MB	······································
	BENZO(K)FLUORANTHENE	ND		ug/L	525.2	0.0500	D	
	BENZYL BUTYL PHTHALATE	ND		ug/L	525.2	0.6000	D	
	BROMACIL	ND		ug/L	525.2	0.0500	D	
	BUTACHLOR	ND		ug/L	525.2	0.1000	D	
	CHLORDANE, TECHNICAL	ND		ug/L	525.2	0.0200	D	
	CHRYSENE	ND		ug/L	525.2	0.0500	0	
	CYANAZINE	ND		ug/L	525.2	0.0500)	
	DI(ETHYLHEXYL)-ADIPATE	ND		ug/L	525.2	0.0200)	
	DI(ETHYLHEXYL)-PHTHALATE	ND		ug/L	525.2	0.6000)	
	DIAZINON	ND		ug/L	525.2	0.0500)	
	DIAZINON	ND		ug/L	525.2	0.0500)	
	DIBENZO(A,H)ANTHRACENE	ND		ug/L	525.2	0.05000)	
	DIELDRIN	ND		ug/L	525.2	0.05000)	
	DIETHYL PHTHALATE	ND		ug/L	525.2	0.6000)	
	DIMETHYL PHTHALATE	ND		uq/L	525.2	0.60000	, 1	
	DI-N-BUTYL PHTHALATE	ND		ug/L	525.2	0.60000	, 1	
	ENDRIN	ND		ua/L	525.2	0.02000)	
	EPTC	ND		ug/L	525.2	0.07000		
	FLUORANTHENE	ND		ug/L	525.2	0.05000		
	FLUORENE	ND		ua/L	525.2	0.05000		
	HEPTACHLOR	ND		ug/L	525.2	0.02000		
	HEPTACHLOR EPOXIDE	ND		ua/L	525.2	0.02000		
	HEXACHLOROBENZENE	ND	÷	ua/L	525.2	0.02000		
	HEXACHLOROCYCLO-PENTADIENE	ND		ug/L	525.2	0 02000		
	INDENO(1,2,3-CD)PYRENE	ND		ug/L	525.2	0.05000		
	LINDANE (BHC - GAMMA)	ND		ua/L	525.2	0.02000		
	LINDANE (BHC - GAMMA)	ND		uq/L	525.2	0.02000		
	MALATHION	ND		ug/L	525.2	0.05000		
	MALATHION	ND		ua/L	525.2	0.05000		
	METHOXYCHLOR	ND		ua/L	525.2	0.02000		
	METOLACHLOR	ND		ua/L	525.2	0.25000		
	METRIBUZIN	ND		ua/L	525.2	0.20000		
	NAPTHALENE	ND		ug/L	525.2	0.0000		
	PARATHION	ND		ua/L	525.2	0.02000		
	PARATHION-ETHYL	ND		ug/L	525.2	0.05000		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantitles of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 10 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
525_081222	PENTACHLOROPHENOL	ND		ug/L	525.2	0.0400) MB	
	PERYLENE-D12 (Surr)	100		%	525.2			
	PHENANTHRENE	ND		ug/L	525.2	0.0500	3	
	PROPACHLOR	ND		ug/L	525.2	0.05000)	
	PYRENE	ND		ug/L	525.2	0.05000)	
	PYRENE-D10 (Surr)	94		%	525.2			
	SIMAZINE	ND		ug/L	525.2	0.02000)	
	SIMAZINE	ND		ug/L	525.2	0.02000)	
	TERBACIL	ND		ug/L	525.2	0.05000)	
	TRIFLURALIN	ND		ug/L	525.2	0.05000)	
	TRIPHENYLPHOSPHATE (Surr)	107		%	525.2			
5257_081222		ND		ug/L	525.2	0.10000	MB	
	AZINPHOS-METHYL	ND		ug/L	525.2	0.00000	(
	CHLORPYRIFOS	ND		ug/L	525.2	0.00000		
	DICOFOL	ND		ug/L	525.2	0.00000		
	DIMETHOATE	ND		ug/L	525.2	0.00000		
	FENARIMOL	ND		ug/L	525.2	0.00000		
	HEXAZINONE	ND		ug/L	525.2	0.00000		
	HEXAZINONE (Velpar)	ND		ug/L	525.2	0.02000		
	METALAXYL	ND		ug/L	525.2	0.10000		
	METHIDATHINON	ND		ug/L	525.2	0.50000		
	METHYL PARATHION	ND		ug/L	525.2	0.00000		
	MEVINPHOS	ND		ug/L	525.2	0.00000		
	MYCLOBUTANIL	ND		ug/L	525.2	0.50000		
	NAPROPAMIDE	ND		ug/L	525.2	0.00000		
	PHOSMET	ND		ug/L	525.2	0.10000		
	PROPARGITE	ND		ug/L	525.2	0.00000		
	TRIADIMEFON	ND		ug/L	525.2	0.00000		
	TRIFLUMIZOLE	ND		ug/L	525.2	1.00000		
531 081217		ND		4				
	ALDICARB			ug/L	531.2	0.50000	MB	
				ug/L	531.2	0.25000		
		ND		ug/L	531.2	0.40000		

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 11 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	/ Limits	Qualifier Type*	Comment
531_081217	ALDICARB SULFOXIDE	ND		ug/L	531.2	·····	0.25000	MB	**********
	BDMC (SURR)	96		%	531.2		0.00000		
	CARBARYL	ND		ug/L	531.2		0.50000		
	CARBOFURAN	ND		ug/L	531.2		0.45000		
	METHIOCARB	ND		ug/L	531,2		1.00000		
	METHOMYL	ND		ug/L	531.2		0.25000		
	OXYMAL	ND		ug/L	531.2		1.00000		
	PROPOXUR (BAYGON)	ND		ug/L	531.2		0.25000		
531_090113	3-HYDROXYCARBOFURAN	ND		ua/L	531.2		0.50000	MB	
	ALDICARB	ND		ua/L	531.2		0 25000	141L	
	ALDICARB SULFONE	ND		ua/L	531.2		0.40000		
	ALDICARB SULFOXIDE	ND		ug/L	531.2		0.25000		
	BDMC (SURR)	121		%	531.2		0.00000		
	CARBARYL	ND		ug/L	531.2		0.50000		
	CARBOFURAN	ND		ug/L	531.2		0.45000		
	METHIOCARB	ND		ug/L	531.2		1.00000		
	METHOMYL	ND		ug/L	531.2		0.25000		
	OXYMAL	ND		ug/L	531.2		1.00000		
	PROPOXUR (BAYGON)	ND		ug/L	531.2		0.25000		
ec_081223	ELECTRICAL CONDUCTIVITY	NĎ		uS/cm	SM2510 B		2.50000	MB	
ec 081223	ELECTRICAL CONDUCTIVITY	ИП			0140540.0				
		ND		us/cm	SM2510 B		2.50000	MB	
ec_081223	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_081223	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
OPHOS-081217	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	MB	
tds_081219	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
tds_081219	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 12 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 08-17751 Report Date: 01/28/09

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
tds_081219	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C	2.50000	MB	
tds_081219	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C	2.50000	MB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 13 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-081223A	HARDNESS	131	132.3	mg/L	200.7	99	80-120	QCS	
531_081217	3-HYDROXYCARBOFURAN	41.2	40	ug/L	531.2	103	70-130	QCS	
	ALDICARB	37.5	37.3	ug/L	531.2	101	70-130		
	ALDICARB SULFONE	41.2	44.9	ug/L	531.2	92	70-130		
	ALDICARB SULFOXIDE	43.2	40.2	ug/L	531.2	107	70-130		
	BDMC (SURR)	96		%	531.2		70-130		
	CARBARYL	47	46	ug/L	531.2	102	70-130		
	CARBOFURAN	60.6	60.9	ug/L	531.2	100	70-130		
	METHIOCARB	119.1	121	ug/L	531.2	98	70-130		
	METHOMYL	61.3	61.4	ug/L	531.2	100	70-130		
	OXYMAL	52.7	59.9	ug/L	531.2	88	70-130		
	PROPOXUR (BAYGON)	100	96.7	ug/L	531.2	103	70-130		
COD_081229	CHEMICAL OXYGEN DEMAND	89	92	mg/L	SM5220 D	97	80-120	QCS	
D081230A	BROMATE	0.0187	0.0182	mg/L	300.1	103	75-125	QCS	
ec_081223	ELECTRICAL CONDUCTIVITY	158	150.5	uS/cm	SM2510 B	105	80-120	QCS	
ec_081223	ELECTRICAL CONDUCTIVITY	157	150.5	uS/cm	SM2510 B	104	80-120	QCS	
ec_081223	ELECTRICAL CONDUCTIVITY	159	150.5	uS/cm	SM2510 B	106	80-120	QCS	
ec_081223	ELECTRICAL CONDUCTIVITY	157	150.5	uS/cm	SM2510 B	104	80-120	QCS	
1081217A	CHLORIDE	28.6	30.0	mg/L	300.0	95	80-120	QCS	
	NITRATE-N	2.53	2.50	mg/L	300.0	101	80-120		
OPHOS-081217		0.47	0.40	0					
		0.47	0.49	ng/L	SM4500-P F	90	70-130	QCS	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

Page 14 of 14

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 08-17751 Report Date: 01/28/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
TURB_081217	TURBIDITY	0.98	1.00	NTU	180.1	98	70-130	QCS	

*Notation:

NA = Indicates % Recovery could not be calculated.

[%] Recovery = (Result of Analysis)/(True Value) * 100

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 1 of 7

QUALITY CONTROL REPORT

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Reference Number: 08-17751

Report Date: 1/28/2009

Duplicate

				Duplicate				QC	
Balch	Sample	Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
200.7-081223A					₩₩,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				······
	37079	HARDNESS	119	117	mg CaCO3/L	1.7	0-45	ום	P
	37234	HARDNESS	74.0	73.5	mg CaCO3/L	0.7	0-45	DI	JP
515_081222									
	37091	DCPA (ACID METABOLITES)	1.2	0.8ML	ug/L.	40.0	0-50	DI	q
	37091	2,4 - DCAA (SURR)	95	72	%	27.5	0-45	DI	JP
525_081222									
	36873	1,3-DIMETHYL-2-NITROBENZENE (Surr	100	102	%	2.0	0-45	DI	JP
	36873	PYRENE-D10 (Surr)	93	93	%	0.0	0-45	DI	q
	36873	PERYLENE-D12 (Surr)	103	110	%	6.6	0-45	D	q
	36873	TRIPHENYLPHOSPHATE (Surr)	107	105	%	1.9	0-45	D	JP
	37230	BROMACIL	0.09	0.09	ug/L	0.0	0-45	DI	JP
COD_081229									
D081230A									
EC 081223									
	37233	ELECTRICAL CONDUCTIVITY	171	167	uS/cm	2.4	0-45	ום	q
	37395	ELECTRICAL CONDUCTIVITY	181	181	uS/cm	0.0	0-45	DI	JP
	37476	ELECTRICAL CONDUCTIVITY	16.6	16.7	uS/cm	0.6	0-45	DI	JP
1081217A									
	37252	CHLORIDE	30	30	mg/L	0.0	0-45	DI	IP
	37278	NITRATE-N	0.77	0.8	mg/L	3.8	0-45	D	IP
OPHOS-081217	,				-				
	37235	ORTHO-PHOSPHATE	0.16	0.16	mg/L	0.0	0-50	וח	P
PH 081217					-			2.	
	37235	HYDROGEN ION (pH)	6.58	6.54	oH Units	0.6	0-45	וח	a
TDS 081219		· · · /				2.0	0 10		,
120_001210	37058	TOTAL DISSOLVED SOLIDS	305	311	ma/l	19	045		IP
					····;;=	1.5	u-40	D1	11

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Splke (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Page 2 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

.

Duplicate

				Duplicate					ac	
Batch	Sample	Analyte	Result	Result	Units	rd.	%RPD	Limits	Qualifier	Comments
	37177	TOTAL DISSOLVED SOLIDS	274	267	mg/L		2.6	0-45	DUP	
	37331	TOTAL DISSOLVED SOLIDS	166	156	mg/L		6.2	0-45	DUP	
TURB_081217										
_	37215	TURBIDITY	5.78	5.84	NTU		1.0	0-50	DUP	

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Page 3 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

.

Matrix Spike

				Spike	Spike	Spike		Percer	<u>it Recovery</u>				ac	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
200.7-0812234	٩													······································
	37079	HARDNESS	119	186	185	69.5	mg CaCO3/L	96	95	80-120	1.5	0-60		LFM
	37234	HARDNESS	74.0	142	141	69.5	mg CaCO3/L	98	96	80-120	1.5	0-60		LFM
515_081222														
	37077	2,4 - D	ND	1.88		2	mg/L	94	NA	65-135	NA	0-60		LFM
	37077	2,4,5 - TP (SILVEX)	ND	1.03		1	mg/L	103	NA	65-135	NA	0-60		LFM
	37077	PENTACHLOROPHENOL	ND	1.01		1	ug/L	101	NA	65-135	NA	0-60		LFM
	37077	DALAPON	ND	13		13	mg/L	100	NA	65-135	NA	0-60		LFM
	37077	DINOSEB	ND	2.09		2	mg/L	105	NA	65-135	NA	0-60		LFM
	37077	PICLORAM	ND	0.88		1	mg/L	88	NA	65-135	NA	0-60		LFM
	37077	DICAMBA	ND	0.97		1	ug/L	97	NA	65-135	NA	0-60		LFM
	37077	TOTAL (DCPA & Metabolites)	ND	1.13		1	ug/L	113	NA	65-135	NA	0-60		LFM
	37077	2,4 DB	ND	8		8	ug/L	100	NA	65-135	NA	0-60		LFM
	37077	2,4,5 T	ND	0.95		1	ug/L	95	NA	65-135	NA	0-60		LFM
	37077	BENTAZON	ND	2.18		2	ug/L	109	NA	65-135	NA	0-60		LFM
	37077	DICHLORPROP	ND	3.03		3	ug/L	101	NA	65-135	NA	0-60		LFM
	37077	ACIFLUORFEN	ND	1.01		1	ug/L	101	NA	65-135	NA	0-60		LFM
	37077	CHLORAMBEN	ND	1.34		1	ug/L	134	NA	65-135	NA	0-50		LFM
	37077	2,4 - DCAA (SURR)	92	95			%		NA	70-130	NA	0-60		LFM
	37079	2,4 - D	ND	1.65		2	mg/L	83	NA	65-135	NA	0-60		LFM
	37079	2,4,5 - TP (SILVEX)	ND	0.93		1	mg/L	93	NA	65-135	NA	0-60		LFM
	37079	PENTACHLOROPHENOL	ND	0.94		1	ug/L	94	NA	65-135	NA	0-60		LFM
	37079	DALAPON	ND	11.6		13	mg/L	89	NA	65-135	NA	0-60		LFM
	37079	DINOSEB	ND	1.74		2	mg/L	87	NA	65-135	NA	0-60		LFM
	37079	PICLORAM	ND	0.65		1	mg/L	65	NA	65-135	NA	0-60		LFM
	37079	DICAMBA	ND	0.85		1	ug/L	85	NA	65-135	NA	0-60		LFM
	37079	TOTAL (DCPA & Metabolites)	ND	1.44		1	ug/L	144	NA	65-135	NA	0~60	HQ	LFM
	37079	2,4 DB	ND	7.39		8	ug/L	92	NA	65-135	NA	0-60		LFM
	37079	2,4,5 T	ND	0.81		1	ug/i.	81	NA	65-135	NA	0-60		LFM
	37079	BENTAZON	ND	1.7		2	ug/L	85	NA	65-135	NA	0-60		LFM
	37079	DICHLORPROP	ND	2.7		з	ug/L	90	NA	65-135	NA	0-60		LFM
	37079	ACIFLUORFEN	ND	0.71		1	uġ/L	71	NA	65-135	NA	0-60		LFM
	3707 9	CHLORAMBEN	ND	0.91		1	ug/L	91	NA	65-135	NA	0-50		LFM
	37079	2,4 - DCAA (SURR)	94	98			%		NA	70-130	NA	0-60		LFM
525_081222														
	37231	ENDRIN	ND	1		1	ug/L	100	NA	70-130	NA	0-60		LFM

Duplicate

.....

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Only Duplicate sample with detections are listed in this report

Matrix Spike

Page 4 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

 \mathbf{x}

				Spike	Spike	Spike		Percent	Recovery				QC	
Batch S	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
5	37231	LINDANE (BHC - GAMMA)	ND	1.08		1	ug/L	108	NA	70-130	NA	0-60	LFM	
3	37231	METHOXYCHLOR	ND	1.15		1	ug/L	115	NA	70-130	NA	0-60	LFM	
:	37231	ALACHLOR	ND	2.13		2	ug/L	107	NA	70-130	NA	0-60	LFM	
3	37231	ATRAZINE	ND	2.35		2	ug/L	118	NA	70-130	NA	0-60	LFM	
	37231	BENZO(A)PYRENE	ND	0.87		1	ug/L	87	NA	70-130	NA	0-60	LFM	
3	37231	CHLORDANE, TECHNICAL	ND	1.06		1	ug/L	106	NA	70-130	NA	0-60	LFM	
3	37231	DI(ETHYLHEXYL)-ADIPATE	ND	0.82		1	ug/L	82	NA	70-130	NA	0-60	LFM	
3	37231	DI(ETHYLHEXYL)-PHTHALATE	ND	0.85		1	ug/L	85	NA	70-130	NA	0-60	LFM	
3	37231	HEPTACHLOR	ND	1.03		1	ug/L	103	NA	70-130	NA	0-60	LFM	
3	37231	HEPTACHLOR EPOXIDE	ND	1.09		1	ug/L	109	NA	70-130	NA	0-50	LFM	
3	37231	HEXACHLOROBENZENE	ND	1.04		1	ug/L	104	NA	70-130	NA	0-60	LFM	
3	37231	HEXACHLOROCYCLO-PENTADIENE	ND	0.99		1	ug/L	99	NA	70-130	NA	0-60	LFM	
3	37231	SIMAZINE	ND	1.18		1	ug/L	118	NA	70-130	NA	0-60	LFM	
3	37231	PENTACHLOROPHENOL	ND	3.67		4	ug/L	92	NA	70-130	NA	0-50	LFM	
3	37231	ALDRIN	ND	1.04		1	ug/L	104	NA	70-130	NA	0-60	LFM	
3	37231	BUTACHLOR	ND	1.09		1	ug/L	109	NA	70-130	NA	0-60	LFM	
3	37231	DIELDRIN	ND	1.07		1	ug/L	107	NA	70-130	NA	0-60	LFM	
3	37231	METOLACHLOR	ND	1.11		1	ug/L	111	NA	70-130	NA	0-60	LFM	
3	37231	METRIBUZIN	ND	0.81		1	ug/L	81	NA	70-130	NA	0-60	LFM	
3	37231	PROPACHLOR	ND	1.28		1	ug/L	128	NA	70-130	NA	0-60	LFM	
3	37231	BISPHENOL-A	ND	5.2		5	ug/L	104	NA	70-130	NA	0-50	LFM	
3	37231	BROMACIL	ND	1.06		1	ug/L	106	NA	70-130	NA	0-60	LFM	
3	37231	TERBACIL	ND	1.02		1	ug/L	102	NA	70-130	NA	0-60	LFM	
3	37231	DIAZINON	ND	3.42		3	ug/L	114	NA	70-130	NA	0-60	LFM	
3	37231	SIMAZINE	ND	1.18		1	ug/L	118	NA	70-130	NA	0-60	LFM	
:	37231	EPTC	ND	1.14		1	ug/L	114	NA	70-130	NA	0-60	LFM	
3	37231	DIAZINON	ND	3.42		3	ug/L	114	NA	70-130	NA	0-60	LFM	
3	37231	4,4-DDD	ND	1		1	ug/L	100	NA	70-130	NA	0-60	LFM	
:	37231	4,4-DDE	ND	0.92		1	ug/L	92	NA	70-130	NA	0-60	LFM	
:	37231	LINDANE (BHC - GAMMA)	ND	1.08		1	ug/L	108	NA	70-130	NA	0-60	LFM	
5	37231	4,4-DDT	ND	1		1	ug/L	100	NA	70-130	NA	0-60	LFM	
3	37231	CYANAZINE	ND	2.4		2	ug/L	120	NA	70-130	NA	0-60	LFM	
3	37231	MALATHION	ND	2.06		2	ug/L	103	NA	70-130	NA	0-60	LFM	
:	37231	PARATHION	ND	2.24		2	ug/L	112	NA	70-130	NA	0-60	1.FM	
5	37231	TRIFLURALIN	ND	1.04		1	ug/L	104	NA	70-130	NA	0-60	1.FM	
3	37231	4,4-DDD	ND	1		1	ug/L	100	NA	70-130	NA	0-60	LFM	•

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Spike

Page 5 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

				Spike	Spike	Spike		Percent	Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
	37231	4,4-DDE	ND	0.92		1	ug/L	92	NA	70-130	NA	0-60		LFM
	37231	4,4-DDT	ND	1		1	uġ/Ĺ	100	NA	70-130	NA	0-60		LFM
	37231	MALATHION	ND	2.06		2	ug/L	103	NA	70-130	NA	0-60		LFM
	37231	PARATHION-ETHYL	ND	2.24		2	ug/L	112	NA	70-130	NA	0-60		LFM
	37231	FLUORENE	ND	1.09		1	ug/L	109	NA	70-130	NA	0-60		LFM
	37231	ACENAPHTHYLENE	ND	1.07		1	ug/L	107	NA	70-130	NA	0-60		LFM
	37231	ANTHRACENE	ND	1.05		1	ug/L	105	NA .	70-130	NA	0-60		LFM
	37231	BENZ(A)ANTHRACENE	ND	1.04		1	ug/L	104	NA	70-130	NA	0-60		LFM
	37231	BENZO(B)FLUORANTHENE	ND	0.89		1	ug/L	89	NA	70-130	NA	0-60		LFM
	37231	BENZO(G,H,I)PERYLENE	ND	0.54		1	ug/L	54	NA	70-130	NA	0-60	ME	LFM
	37231	BENZO(K)FLUORANTHENE	ND	0.89		1	ug/L	89	NA	70-130	NA	0-60		LFM
	37231	CHRYSENE	ND	. 1.05		1	ug/L	105	NA	70-130	NA	0-60		LFM
	37231	DIBENZO(A,H)ANTHRACENE	ND	0.63		1	ug/L	63	NA	70-130	NA	0-60	ME	LFM
	37231	INDENO(1,2,3-CD)PYRENE	ND	0.54		1	ug/L	54	NA	70-130	NA	0-60	ME	LFM
	37231	PHENANTHRENE	ND	1.09		1	ug/L	109	NA	70-130	NA	0-60		LFM
	37231	PYRENE	ND	1.06		1	ug/L	106	NA	70-130	NA	0-60		LFM
	37231	BENZYL BUTYL PHTHALATE	ND	1.05		1	ug/L	105	NA	70-130	NA	0-60		LFM
	37231	DI-N-BUTYL PHTHALATE	ND	1.15		1	ug/L	115	NA	70-130	NA	0-60		LFM
	37231	DIETHYL PHTHALATE	ND	1.45		1	ug/L	145	NA	70-130	NA	0-60	B5	LFM
	37231	DIMETHYL PHTHALATE	ND	1.08		1	ug/L	108	NA	70-130	NA	0-60		LFM
	37231	1,3-DIMETHYL-2-NITROBENZENE (Surr	109	104			%		NA	70-130	NA	0-60		LFM
	37231	PYRENE-D10 (Surr)	93	92			%		NA	70-130	NA	0-60		LFM
	37231	PERYLENE-D12 (Surr)	102	98			%		NA	70-130	NA	0-60		LFM
	37231	TRIPHENYLPHOSPHATE (Surr)	107	108			%		NA	70-130	NA	0-60		LFM
525X_081222														
_	37231	HEXAZINONE	ND	1.2		1	ug/L	120	NA	70-130	NA	0-50		LFM
	37231	HEXAZINONE (Velpar)	ND	1.2		1	ug/L	120	NA	70-130	NA	0-60		LFM
531 081217														
	36873	OXYMAL	ND	10.5	11	10	ua/L	105	110	70-130	4.7	0-50		1 FM
	36873	CARBOFURAN	ND	10.4	10.5	10	ug/L	104	105	70-130	1.0	0-50		1 FM
	36873	ALDICARB SULFOXIDE	ND	10.6	11.6	10	ug/L	106	116	70-130	9.0	0-50		1 FM
	36873	ALDICARB SULFONE	ND	10.8	11.7	10	ua/L	108	117	70-130	8.0	0-50	•	IFM
	36873	METHOMYL	ND	10.6	11.4	10	ug/L	106	114	70-130	7.3	0-50		LFM
	36873	3-HYDROXYCARBOFURAN	ND	10.9	11	10	ug/L	109	110	70-130	0.9	0-50		LEM
	36873	ALDICARB	ND	11.1	10.9	10	ug/L	111	109	70-130	1.8	0-50		LEW
	36873	CARBARYL	ND	11	11.2	10	ug/L	110	112	70-130	1.8	0-50		LEM
							-							

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Page 6 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

 \mathbf{x}

Matrix Spike

				Spike	Spike	Spike		Percent	Recovery				QC	
Batch	Sample	Analyle	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
	36873	PROPOXUR (BAYGON)	ND	11.1	11.1	10	ug/L	111	111	70-130	0.0	0-50		LFM
	36873	METHIOCARB	ND	11.1	11.1	10	ug/L	111	111	70-130	0.0	0-50		LFM
	36873	BDMC (SURR)	101	103	100		%		NA	70-130	NA	0-50		LFM
	37232	OXYMAL	ND	11.5	11.1	10	ug/L	115	111	70-130	3.5	0-50		LFM
	37232	CARBOFURAN	ND	10.4	11.5	10	ug/L	104	115	70-130	10.0	0-50		LFM
	37232	ALDICARB SULFOXIDE	ND	12.1	11.9	10	ug/L	121	119	70-130	1.7	0-50		LFM
	37232	ALDICARB SULFONE	ND	12.2	11.9	10	ug/L	122	119	70-130	2.5	0-50		LFM
	37232	METHOMYL	ND	12.2	11.7	10	ug/L	122	117	70-130	4.2	0-50		LFM
	37232	3-HYDROXYCARBOFURAN	ND	11.8	11.7	10	ug/L	118	117	70-130	0.9	0-50		LFM
	37232	ALDICARB	ND	12	11.7	10	ug/L	120	117	70-130	2.5	0-50		LFM
	37232	CARBARYL	ND	12.1	12.4	10	ug/L	121	124	70-130	2.4	0-50		LFM
	37232	PROPOXUR (BAYGON)	ND ,	11.7	12.2	10	ug/L	117	122	70-130	4.2	0-50		LFM
	37232	METHIOCARB	ND ,	11.5	11	10	ug/L	115	110	70-130	4.4	0-50		LFM
	37232	BDMC (SURR)	110	105	109		%		NA	70-130	NA	0-50		LFM
531_090113														
	37742	OXYMAL	ND	11.5	11.8	10	ug/L	115	118	70-130	2.6	0-50		LFM
	37742	CARBOFURAN	ND	11.1	11	10	ug/L	111	110	70-130	0. 9	0-50		LFM
	37742	ALDICARB SULFOXIDE	ND	11.7	12.1	10	ug/L	117	121	70-130	3.4	0-50		LFM
	37742	ALDICARB SULFONE	ND	12.1	11.7	10	ug/L	121	117 -	70-130	3.4	0-50		LFM
	37742	METHOMYL	ND	12.1	11.9	10	ug/L	121	119	70-130	1.7	0-50		LFM
	37742	3-HYDROXYCARBOFURAN	ND	11.8	11.1	10	ug/L	118	111	70-130	6.1	0-50		LFM
	37742	ALDICARB	ND	11.7	11.7	10	ug/L	117	117	70-130	0.0	0-50		LFM
	37742	CARBARYL	ND	11.7	11.7	10	ug/L	117	117	70-130	0.0	0-50		LFM
	37742	PROPOXUR (BAYGON)	ND	11.8	11.6	10	ug/L	118	116	70-130	1.7	0-50		LFM
	37742	METHIOCARB	ND	10.9	11.5	10	ug/L	109	115	70-130	5.4	0-50		LFM
	37742	BDMC (SURR)	103	102	110		%		NA	70-130	NA	0-50		LFM
COD_081229														
_	37235	CHEMICAL OXYGEN DEMAND	ND	55	55	50	mg/L	110	110	80-120	0.0	0-60		LFM
D081230A														
	37233	BROMATE	ND	0.0096		0.010	mg/L	96	NA	75-125	NA	0-60		LFM
	37255	BROMATE	ND	0.0106		0.010	mg/L	106	NA	75-125	NA	0-60		LFM
1081217A														
	37252	NITRATE-N	ND	1.04		1.00	mg/L	104	NA	80-120	NA	0-60		LFM
	37252	CHLORIDE	30	31		1.00	mg/L	100	NA	80-120	NA	0-60		LFM
	37278	NITRATE-N	0.77	2.84		1.00	mg/L	207	NA	80-120	NA	0-60	м	LFM Chlorinated

Duplicate

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

10

Page 7 of 7 Reference Number: 08-17751 Report Date: 1/28/2009

r.

Matrix Sp	oike				Duplicate									
				Spike	Spike	Spike		Percent	Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
OPHOS-08121	7													
	37235	ORTHO-PHOSPHATE	0.16	1.20	1.20	1.00	mg/L	104	104	70-130	0.0	0-50	LEM	

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

a

Page 1 of 1

Qualifier Definitions

Reference Number: 08-17751 Report Date: 01/28/09

Qualifier	Definition
AC	Ambient contamination during fortification of samples.
B5	The compound was detected in the sample below the State Reporting Limit, result is biased high.
HQ	High QCS recovery due to increased detector response of the sample extract. The continuing calibration checks are within acceptance limits.
J	Indicates an estimated concentration. This occurs when an analyte concentration is below the calibration curve but is above the method detection limit.
М	Matrix induced bias assumed.
ME	Matrix spike shows a possible matrix induced bias. The LFB was within acceptance limits, results for this compound are suspect.
ML	Indicates mechanical loss during extraction.
N1	Acceptance limits have not been established, the limits listed are for guidance only.
S	Spiking amount was lower than the 5:1 spike to background (sample amount) basis for performance criteria. The reported criteria does not apply due to increased errors in measurement of both sample and spike concentration.

Note: Some qualifier definitions found on this page may pertain to results or QC data which are not printed with this report.

Page 1 of 2

Data Report

Client Name: Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862 Reference Number: 09-02154 Project: Hall-Wentland Recharge Sites Report Date: 3/10/09 Date Received: 2/13/09 Peer Review:

Sample Descri Lab Nu	Sample Description: HW1 - Hall-Wentland 1 Sample Date: 2/12/09 Lab Number: 4480 Collected By: Unknown										
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Anal	yst Batch	Comment
14797-55-8	NITRATE-N	1.71	0.100	0.015	mg/L	1	300.0	2/14/09	BJ	1090213A	
E-10173	TOTAL DISSOLVED SOLIDS	105	10	6	mg/L	1	SM2540 C	2/18/09	CCN	TDS_090218	
16887-00-6	CHLORIDE	3	0.1	0.012	mg/L	1	300.0	2/13/09	BJ	1090213A	
14265-44-2	ORTHO-PHOSPHATE	0.23	0.01	0.002	mg/L	1	SM4500-P F	2/13/09	SO	OPHOS-090213	
E-10139	HYDROGEN ION (pH)	6.45			pH Units	1	SM4500-H+ B	2/13/09	CCN	PH_090213	
E-10617	TURBIDITY	0.98	0.05	0.03	NTU	1	180.1	2/13/09	CCN	TURB_090213	
E-10184	ELECTRICAL CONDUCTIVITY	158	10		uS/cm	1	SM2510 B	2/16/09	CCN	EC_090216	
E-11778	HARDNESS	57.6	3.30	0.055	mg CaCO3/L	1	200.7	2/16/09	BJ	200.7-090216A	
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	2/16/09	MAK	COD_090216	
15541-45-4	BROMATE	ND	0.005	0.0016	mg/L	1	300.1	3/4/09	MVP	D090304A	

Sample Descri Lab Nu	iption: HW2 - Hall-Wentland 2 mber: 4481		Sample Date: 2/12/09 Collected By: Unknown								
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Anal	yst Batch	Comment
14797-55-8	NITRATE-N	1.94	0.100	0.015	mg/L	1	300.0	2/14/09	BJ	1090213A	
E-10173	TOTAL DISSOLVED SOLIDS	105	10	6	mg/L	1	SM2540 C	2/18/09	CCN	TDS_090218	
16887-00-6	CHLORIDE	3.8	0.1	0.012	mg/L	1	300.0	2/13/09	BJ	1090213A	
14265-44-2	ORTHO-PHOSPHATE	0.20	0.01	0.002	mg/L	1	SM4500-P F	2/13/09	SO	OPHOS-090213	
E-10139	HYDROGEN ION (pH)	6.49			pH Units	1	SM4500-H+ B	2/13/09	CCN	PH_090213	
E-10617	TURBIDITY	20.3	0.05	0.03	NTU	1	180.1	2/13/09	CCN	TURB_090213	
E-10184	ELECTRICAL CONDUCTIVITY	160	10		uS/cm	1	SM2510 B	2/16/09	CCN	EC_090216	
E-11778	HARDNESS	54.7	3.30	0.055	mg CaCO3/L	1	200.7	2/16/09	BJ	200.7-090216A	
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	2/16/09	MAK	COD_090216	
15541-45-4	BROMATE	ND	0.005	0.0016	mg/L	1	300.1	3/4/09	MVP	D090304A	

Sample Descri	Sample Description: HW3 - Hall-Wentland 3						Sample Date: 2/12/09							
Lab Nu	mber: 4482				Collected By: Unknown									
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed Analyst Batch Comment						

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions.

D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number. Form: cRslt_2.rpt

Data Report

14797-55-8	NITRATE-N	2.97	0.100	0.015	mg/L	1	300.0	2/14/09	BJ	1090213A
E-10173	TOTAL DISSOLVED SOLIDS	125	10	6	mg/L	1	SM2540 C	2/18/09	CCN	TDS_090218
16887-00-6	CHLORIDE	2.8	0.1	0.012	mg/L	1	300.0	2/13/09	BJ	1090213A
14265-44-2	ORTHO-PHOSPHATE	0.20	0.01	0.002	mg/L	1	SM4500-P F	2/13/09	SO	OPHOS-090213
E-10139	HYDROGEN ION (pH)	6.50			pH Units	1	SM4500-H+ B	2/13/09	CCN	PH_090213
E-10617	TURBIDITY	4.53	0.05	0.03	NTU	1	180.1	2/13/09	CCN	TURB_090213
E-10184	ELECTRICAL CONDUCTIVITY	194	10		uS/cm	1	SM2510 B	2/16/09	CCN	EC_090216
E-11778	HARDNESS	71.8	3.30	0.055	mg CaCO3/L	1	200.7	2/16/09	BJ	200.7-090216A
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	2/16/09	MAK	COD_090216
15541-45-4	BROMATE	ND	0.005	0.0016	mg/L	1	300.1	3/4/09	MVP	D090304A

Sample Description: HWS1 - Hall-Wentland Surface 1 Lab Number: 4483 Sample Date: 2/12/09 Collected By: Unknown

CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	st Batch	Comment
14797-55-8	NITRATE-N	0.9	0.100	0.015	mg/L	1	300.0	2/14/09	BJ	1090213A	
E-10173	TOTAL DISSOLVED SOLIDS	97	10	6	mg/L	1	SM2540 C	2/18/09	CCN	TDS_090218	
16887-00-6	CHLORIDE	2.3	0.1	0.012	mg/L	1	300.0	2/13/09	BJ	1090213A	
14265-44-2	ORTHO-PHOSPHATE	0.24	0.01	0.002	mg/L	1	SM4500-P F	2/13/09	SO	OPHOS-090213	
E-10139	HYDROGEN ION (pH)	7.27			pH Units	1	SM4500-H+ B	2/13/09	CCN	PH_090213	
E-10617	TURBIDITY	38.2	0.05	0.03	NTU	1	180.1	2/13/09	CCN	TURB_090213	
E-10184	ELECTRICAL CONDUCTIVITY	148	10		uS/cm	1	SM2510 B	2/16/09	CCN	EC_090216	
E-11778	HARDNESS	56.1	3.30	0.055	mg CaCO3/L	1	200.7	2/16/09	BJ	200.7-090216A	
E-10117	CHEMICAL OXYGEN DEMAND	14	8.0	2.47	mg/L	1	SM5220 D	2/16/09	MAK	COD_090216	
15541-45-4	BROMATE	0.005	0.005	0.0016	mg/L	1	300.1	3/5/09	MVP	D090305A	

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

March 18, 2009

Page 1 of 1

Mr. Troy Baker Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862

RE: 09-03592 - Hall-Wentland Recharge Sites

Dear Mr. Troy Baker,

Your project: Hall-Wentland Recharge Sites, was received on Friday March 13, 2009.

All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone me at 800 755-9295.

Respectfully Submitted,

Lawrence J Henderson, PhD Director of Laboratories

Enclosures Data Report

Page 1 of 1

Data Report

Client Name:	Walla Walla Basin Watershed Council
	810 S Main Street
	Milton-Freewater, OR 97862

Reference Number: 09-03592 Project: Hall-Wentland Recharge Sites Report Date: 3/18/09 Date Received: 3/13/09 Peer Review:

Sample Descri Lab Nu	ption: HW3 - Hall Wentland mber: 7341						Samı Colle	ole Date:	3/12/0 Unkno	9 own	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Anal	yst Batch	Comment
14797-55-8	NITRATE-N	1.95	0.100	0.015	mg/L	1	300.0	3/14/09	BJ	1090313A	
E-10173	TOTAL DISSOLVED SOLIDS	118	10	6	mg/L	1	SM2540 C	3/16/09	CCN	TDS_090316	
16887-00-6	CHLORIDE	2.9	20	0.012	mg/L	1	300.0	3/13/09	BJ	1090313A	
14265-44-2	ORTHO-PHOSPHATE	ND	0.10	0.01	mg/L	1	300.0	3/14/09	BJ	1090313A	
E-10139	HYDROGEN ION (pH)	6.51			pH Units	1	SM4500-H+ B	3/13/09	CCN	ph_090313	
E-10617	TURBIDITY	4.70	0.05	0.03	NTU	1	180.1	3/13/09	CCN	TURB_090313	
E-10184	ELECTRICAL CONDUCTIVITY	167	10		uS/cm	1	SM2510 B	3/16/09	CCN	EC_090316	
E-11778	HARDNESS	68.4	3.30	0.055	mg CaCO3/L	1	200.7	3/16/09	BJ	200.7-090316A	
E-10117	CHEMICAL OXYGEN DEMAND	ND	8	2.47	mg/L	1	SM5220 D	3/16/09	MAK	COD_090316	
15541-45-4	BROMATE	ND	0.005	0.00118	mg/L	1	300.1	3/17/09	MVP	D090317A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

If you have any questions concerning this report contact us at the above phone number. ${\ensuremath{\mathsf{Form: cRslt_2.rpt}}}$

Page 1 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 09-03592 Report Date: 03/18/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090316A	HARDNESS	72.4	69.5	mg/L	200.7	104	80-120	LFB	
COD_090316	CHEMICAL OXYGEN DEMAND	53	50	mg/L	SM5220 D	106	80-120	LFB	
tds_090316	TOTAL DISSOLVED SOLIDS	476	500	mg/L	SM2540 C	95	80-120	LFB	
tds_090316	TOTAL DISSOLVED SOLIDS	474	500	mg/L	SM2540 C	95	80-120	LFB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Page 2 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 09-03592 Report Date: 03/18/09

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
200.7-090316A	HARDNESS	ND		mg/L	200.7	10.000	OC LRB	
COD_090316	CHEMICAL OXYGEN DEMAND	ND		mg/L	SM5220 D	4.0000	0 LRB	
D090317A	BROMATE	ND		mg/L	300.1	0.0050	0 LRB	
1090313A	CHLORIDE NITRATE-N ORTHO-PHOSPHATE	ND ND ND		mg/L mg/L mg/L	300.0 300.0 300.0	0.1000 0.1000 0.1000	0 LRB 0	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 3 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 09-03592 Report Date: 03/18/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Typ	e* Comment
200.7-090316A	HARDNESS	ND		mg/L	200.7		0.82000) MB	
ec_090316	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000) MB	
ec_090316	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000) MB	
ec_090316	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000) MB	
tds_090316	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000) MB	
tds_090316	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000) MB	
tds_090316	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000) MB	
turb_090313	TURBIDITY	ND		NTU	180.1		0.02000) MB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Page 4 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 09-03592 Report Date: 03/18/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090316A	HARDNESS	133	132.3	mg/L	200.7	101	80-120	QCS	
COD_090316	CHEMICAL OXYGEN DEMAND	97	92	mg/L	SM5220 D	105	80-120	QCS	
D090317A	BROMATE	0.0163	0.0157	mg/L	300.1	104	75-125	QCS	
ec_090316	ELECTRICAL CONDUCTIVITY	154	150.1	uS/cm	SM2510 B	103	80-120	QCS	
ec_090316	ELECTRICAL CONDUCTIVITY	149	150.1	uS/cm	SM2510 B	99	80-120	QCS	
ec_090316	ELECTRICAL CONDUCTIVITY	155	150.1	uS/cm	SM2510 B	103	80-120	QCS	
1090313A	CHLORIDE NITRATE-N ORTHO-PHOSPHATE	30.4 2.41 2.47	30.0 2.50 2.50	mg/L mg/L mg/L	300.0 300.0 300.0	101 96 99	80-120 80-120 80-120	QCS	
turb_090313	TURBIDITY	0.94	1.00	NTU	180.1	94	70-130	QCS	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 1 of 3

QUALITY CONTROL REPORT

Reference Number: 09-03592

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Report Date: 3/18/2009

Duplicate

				Duplicate				QC	
Batch	Sample	Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
200.7-090316A									
	7293	HARDNESS	41.3	41.6	mg CaCO3/L	0.7	0-45	DUF	•
	7345	HARDNESS	95.8	96.9	mg CaCO3/L	1.1	0-45	DUF	
COD_090316									
	7366	CHEMICAL OXYGEN DEMAND	590	572	mg/L	3.1	0-45	DUF	
D090317A									
EC_090316									
	7345	ELECTRICAL CONDUCTIVITY	209	216	uS/cm	3.3	0-45	DUF	,
	7414	ELECTRICAL CONDUCTIVITY	209	210	uS/cm	0.5	0-45	DUF	,
1090313A									
	7310	CHLORIDE	59	59	mg/L	0.0	0-45	DUF	,
	7345	NITRATE-N	0.25	0.25	mg/L	0.0	0-45	DUF	•
	7345	CHLORIDE	5.3	5.3	mg/L	0.0	0-45	DUF	•
	7405	NITRATE-N	0.2	0.2	mg/L	0.0	0-45	DUF	
	7405	CHLORIDE	6.5	6.5	mg/L	0.0	0-45	DUF	
ph_090313									
	7405	HYDROGEN ION (pH)	8.26	8.24	pH Units	0.2	0-45	DUF	•
PH_090313									
	7293	HYDROGEN ION (pH)	9.31	9.36	pH Units	0.5	0-45	DUF	•
	7341	HYDROGEN ION (pH)	6.51	6.56	pH Units	0.8	0-45	DUF	
TDS_090316									
	7411	TOTAL DISSOLVED SOLIDS	84	80	mg/L	4.9	0-45	DUF	
	7414	TOTAL DISSOLVED SOLIDS	110	107	mg/L	2.8	0-45	DUF	
turb_090313									
	7405	TURBIDITY	0.54	0.49	NTU	9.7	0-50	DUF	•
TURB_090313									
	7345	TURBIDITY	0.08	0.07	NTU	13.3	0-50	DUF	

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Duplicate

			Duplicate				QC	
Batch	Sample Analyte	Result	Result	Units	%RPD Lim	nits	Qualifier	Comments

[%]RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Spike

				Spike	Spike	Spike		Percent	<u>Recovery</u>				QC	
Batch S	ample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
200.7-090316A														
	7293	HARDNESS	41.3	112	112	69.5	mg CaCO3/L	102	102	80-120	0.0	0-60	LFM	
	7345	HARDNESS	95.8	166	166	69.5	mg CaCO3/L	101	101	80-120	0.0	0-60	LFM	
COD_090316														
_	7341	CHEMICAL OXYGEN DEMAND	ND	52	54	50	mg/L	104	108	80-120	3.8	0-60	LFM	
	7366	CHEMICAL OXYGEN DEMAND	590	636	635	50	mg/L	92	90	80-120	2.2	0-60	LFM	
D090317A														
	7335	BROMATE	ND	0.0104		0.010	mg/L	104	NA	75-125	NA	0-60	LFM	
	7500	BROMATE	ND	0.0103		0.010	mg/L	103	NA	75-125	NA	0-60	LFM	
1090313A														
	7310	NITRATE-N	ND	1.05		1.00	mg/L	105	NA	80-120	NA	0-60	LFM	
	7345	NITRATE-N	0.25	1.25		1.00	mg/L	100	NA	80-120	NA	0-60	LFM	
	7345	CHLORIDE	5.3	6.3		1.00	mg/L	100	NA	80-120	NA	0-60	LFM	
	7405	NITRATE-N	0.2	19.7		20.00	mg/L	98	NA	80-120	NA	0-60	LFM	
	7405	CHLORIDE	6.5	27		20.00	mg/L	103	NA	80-120	NA	0-60	LFM	

Duplicate

[%]RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

	and the second second second	100 CO.	1992	1 10 A				M: COC 01-06-2009	FORM
Chain of custody & la		Y							1
Samples received intr		\wedge	1	0		1000			100
Sample temp 5 C	3.13:24 8:		X	R					1
Time Custody seals intact	Date			red by	Receiv	Time	Date	linquished by	Rel
WW - waste water OL - oi S - soil Other_	3W - surface water 3W - Ground water	ater G	ter trinking wa	* W - wa DW - c		or Email)	uest (Must include FAX o	ample Receipt Requ	a
	Email			FAX:		12	Phone:	npled by:	an
				330 3304					0
				N. ar		ant -			-
03592	90								ω
									7
					_				03
				ine San					5
									4
				1. 1. 1. 1. 1. 1.					w
						<u>д</u>			10
	X	λ	10.25	2/12			Hall-Wentland	HW J	-
O-Ph	Hardr NO3, TDS.	Brom	Time	mple atrix [*] Date	Grab/ Sa Comp. Ma		Location	Field ID	
os,pH,Turb,Ec	COD	ate	e) e Call Req.	e Required % surcharg surcharge) Phone Phone Call Re	idard idard -time (50% kest (100% s rgency (F	Turn Arc Stan Half- Quick Eme	imple Location. sis requests. etal individually (NEW) to be performed for tion. ntainers.	Use one line per sa Be specific in analy (<i>NEW</i>) List each m Check off analyses each sample Loact Enter number of co	51 <u>4</u> ω Ν
s Requested	Analyse					ſ		structions	E
Other				ejd.	Card#:		entland Recharge Sites	roject Hall-We	P
RCRA / CERCLA	ires /	Expi	A/E	M/C	Visa		e wwbwe net	mail: T.Baker	Ē
Clean Water Act			Attn	dine :	P.O.#:		3-2170 FAX:	hone: 541.938	무
Safe Drinking Water Act		13	FAX		Phone:		iker	tn: Troy Ba	Att
heck Regulatory Program	Zip: 97862 2	OR	Wa St:	Milton-Free	City:	7862 (reewast: OR zip: 9	ity: Milton-F	0
of #	Ŗ	eet	Main Str	810 South	Address:		Aain Street	hip Address: 810 S N	2
For Lab Use Univ	ned Counc	Watersh	a Basin	Walla Wall	Bill to:	Cour	Valla Basin Watershed C	eport to: Walla V	Re

02-03592

May 8, 2009

Page 1 of 1

Mr. Troy Baker Walla Walla Basin Watershed Council 810 S Main Street Milton-Freewater, OR 97862

RE: 09-05772 - Locher Road and Hall-Wentland Recharge Sites

Dear Mr. Troy Baker,

Your project: Locher Road and Hall-Wentland Recharge Sites, was received on Friday April 24, 2009. All samples were analyzed within the accepted holding times, were appropriately preserved and were analyzed according to approved analytical protocols. The quality control data was within laboratory acceptance limits, unless specified in the QA reports.

If you have questions phone me at 800 755-9295.

Respectfully Submitted,

Lawrence J Henderson, PhD Director of Laboratories

Enclosures Data Report

Data Report

Sample Description:HW3 - Hall Wentland 3Sample Date: 4/23/09Lab Number:11907Collected By: Unknown													
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	vst Batch	Comment		
E-10139	HYDROGEN ION (pH)	6.31			pH Units	1	SM4500-H+ B	4/24/09	CCN	PH_090424			
E-10617	TURBIDITY	2.44	0.05	0.02	NTU	1	180.1	4/24/09	MAK	TURB_090424			
14797-55-8	NITRATE-N	1.96	0.100	0.015	mg/L	1	300.0	4/25/09	BJ	1090424A			
16887-00-6	CHLORIDE	2.8	20	0.012	mg/L	1	300.0	4/24/09	BJ	1090424A			
E-10173	TOTAL DISSOLVED SOLIDS	122	10	6	mg/L	1	SM2540 C	4/28/09	CCN	TDS_090428			
14265-44-2	ORTHO-PHOSPHATE	0.17	0.01	0.002	mg/L	1	SM4500-P F	4/24/09	SO	OPHOS-090424			
E-10184	ELECTRICAL CONDUCTIVITY	164	10		uS/cm	1	SM2510 B	4/24/09	CCN	EC_090424			
15541-45-4	BROMATE	ND	0.005	0.00046	mg/L	1	300.1	4/29/09	MVP	D090429A			
E-11778	HARDNESS	63.0	3.30	0.055	mg CaCO3/I	1	200.7	4/27/09	BJ	200.7-090427A			
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	5/7/09					
Sample Descr	iption: HW1 - Hall Wentland 1			Sample Date: 4/23/09									
Lab Nu	mber: 11908	Collected By: Unknown											
CAS ID#	Parameter	Result	PQL MDL Units DF Method Analyzed Analyst Batch Commen										
E-10139	HYDROGEN ION (pH)	6.34			pH Units	1	SM4500-H+ B						
E-10617	TURBIDITY	2.02	0.05	0.02	NTU	1	180.1	4/24/09	MAK	TURB_090424			
14797-55-8	NITRATE-N	1.15	0.100	0.015	mg/L	1	300.0	4/25/09	BJ	1090424A			
16887-00-6	CHLORIDE	2.7	20	0.012	mg/L	1	300.0	4/24/09	BJ	1090424A			
E-10173	TOTAL DISSOLVED SOLIDS	96	10	6	mg/L	1	SM2540 C	4/28/09	CCN	TDS_090428			
14265-44-2	ORTHO-PHOSPHATE	0.21	0.01	0.002	mg/L	1	SM4500-P F	4/24/09	SO	OPHOS-090424			
E-10184	ELECTRICAL CONDUCTIVITY	142	10		uS/cm	1	SM2510 B	4/24/09	CCN	EC_090424			
15541-45-4	BROMATE	ND	0.005	0.00046	mg/L	1	300.1	4/29/09	MVP	D090429A			
E-11778	HARDNESS	56.8	3.30	0.055	mg CaCO3/I	1	200.7	4/27/09	BJ	200.7-090427A			
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	5/7/09	MAK	COD_090507			
Sample Descr	iption: HW2 - Hall Wentland 2						Sam	ole Date:	4/23/0	9			
Lab Nu	mber: 11909						Colle	ected By:	Unkno	wn			
CAS ID#	Parameter	Result	PQL	MDL	DL Units DF Method Analyzed Analyst Batch Comment								
E-10139	HYDROGEN ION (pH)	6.30			pH Units	1	SM4500-H+ B	4/24/09	CCN	PH_090424			
E-10617	TURBIDITY	1.75	0.05	0.02	NTU	1	180.1	4/24/09	MAK	TURB_090424			
14797-55-8	NITRATE-N	1.92	0.100	0.015	mg/L	1	300.0	4/25/09	BJ	1090424A			
16887-00-6	CHLORIDE	3.7	20	0.012	mg/L	1	300.0	4/24/09	BJ	1090424A			
E-10173	TOTAL DISSOLVED SOLIDS	110	10	6	mg/L	1	SM2540 C	4/28/09	CCN	TDS_090428			
14265-44-2	ORTHO-PHOSPHATE	0.17	0.01	0.002	mg/L	1	SM4500-P F	4/24/09	SO	OPHOS-090424			
E-10184	ELECTRICAL CONDUCTIVITY	162	10	uS/cm 1 SM2510 B 4/24/09 CCN EC_090424									

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

Data Report

15541-45-4	BROMATE	ND	0.005	0.00046	mg/L	1	300.1	4/29/09	MVP	D090429A
E-11778	HARDNESS	61.7	3.30	0.055	mg CaCO3/L	1	200.7	4/27/09	BJ	200.7-090427A
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	5/7/09	MAK	COD_090507

Sample Descri Lab Nu	ption: HWSW1 - Hall Wentland So mber: 11910	ource Water			Sample Date: 4/23/09 Collected By: Unknown							
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Analyzed	Anal	yst Batch	Comment	
E-10139	HYDROGEN ION (pH)	7.59			pH Units	1	SM4500-H+ B	4/24/09	CCN	PH_090424		
E-10617	TURBIDITY	17.0	0.05	0.02	NTU	1	180.1	4/24/09	MAK	TURB_090424		
14797-55-8	NITRATE-N	0.6	0.100	0.015	mg/L	1	300.0	4/25/09	BJ	1090424A		
16887-00-6	CHLORIDE	1.8	20	0.012	mg/L	1	300.0	4/24/09	BJ	1090424A		
E-10173	TOTAL DISSOLVED SOLIDS	83	10	6	mg/L	1	SM2540 C	4/28/09	CCN	TDS_090428		
14265-44-2	ORTHO-PHOSPHATE	0.16	0.01	0.002	mg/L	1	SM4500-P F	4/24/09	SO	OPHOS-090424		
E-10184	ELECTRICAL CONDUCTIVITY	118	10		uS/cm	1	SM2510 B	4/24/09	CCN	EC_090424		
15541-45-4	BROMATE	ND	0.005	0.00046	mg/L	1	300.1	4/29/09	MVP	D090429A		
E-11778	HARDNESS	44.8	3.30	0.055	mg CaCO3/L	1	200.7	4/27/09	BJ	200.7-090427A		
E-10117	CHEMICAL OXYGEN DEMAND	ND	8.0	2.47	mg/L	1	SM5220 D	5/7/09	MAK	COD_090507		

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

PQL = Practical Quantitation Limit is the lowest level that can be acheived within specified limits of precision and accuracy during routine laboratory operating conditions. D.F. - Dilution Factor

Page 1 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 09-05772 Report Date: 05/08/09

			True					QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090427A	HARDNESS	73.3	69.5	mg/L	200.7	105	80-120	LFB	
COD_090507	CHEMICAL OXYGEN DEMAND	55	50	mg/L	SM5220 D	110	80-120	LFB	
OPHOS-090424	ORTHO-PHOSPHATE	1.01	1.00	mg/L	SM4500-P F	101	70-130	LFB	
tds_090428	TOTAL DISSOLVED SOLIDS	504	500	mg/L	SM2540 C	101	80-120	LFB	
tds_090428	TOTAL DISSOLVED SOLIDS	512	500	mg/L	SM2540 C	102	80-120	LFB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 2 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 09-05772 Report Date: 05/08/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090427A	HARDNESS	ND		mg/L	200.7		10.0000	i LRB	
COD_090507	CHEMICAL OXYGEN DEMAND	ND		mg/L	SM5220 D		4.00000	LRB	
D090429A	BROMATE	ND		mg/L	300.1		0.00500	LRB	
1090424A	CHLORIDE	ND		mg/L	300.0		0.10000	LRB	
	NITRATE-N	ND		mg/L	300.0		0.10000	1	
OPHOS-090424	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	LRB	
TURB_090424	TURBIDITY	ND		NTU	180.1		0.02000	LRB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

QA

Burlington WA 1620 S Walnut St - 98233 Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax Bellingham WA 805 Orchard Dr Suite 4 - 98225 Microbiology 360.671.0688 • 360.671.1577fax

Page 3 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Method Blank

Reference Number: 09-05772 Report Date: 05/08/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090427A	HARDNESS	ND		mg/L	200.7		0.82000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
ec_090424	ELECTRICAL CONDUCTIVITY	ND		uS/cm	SM2510 B		2.50000	MB	
OPHOS-090424	ORTHO-PHOSPHATE	ND		mg/L	SM4500-P F		0.10000	MB	
tds_090428	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	
tds_090428	TOTAL DISSOLVED SOLIDS	ND		mg/L	SM2540 C		2.50000	MB	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 4 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Quality Control Sample

Reference Number: 09-05772 Report Date: 05/08/09

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
200.7-090427A	HARDNESS	135	132.3	mg/L	200.7	102	80-120	QCS	
COD_090507	CHEMICAL OXYGEN DEMAND	94	92	mg/L	SM5220 D	102	80-120	QCS	
D090429A	BROMATE	0.0155	0.0157	mg/L	300.1	99	75-125	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	155	150.1	uS/cm	SM2510 B	103	80-120	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	154	150.1	uS/cm	SM2510 B	103	80-120	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	154	150.1	uS/cm	SM2510 B	103	80-120	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	150	150.1	uS/cm	SM2510 B	100	80-120	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	152	150.1	uS/cm	SM2510 B	101	80-120	QCS	
ec_090424	ELECTRICAL CONDUCTIVITY	154	150.1	uS/cm	SM2510 B	103	80-120	QCS	
1090424A	CHLORIDE	29	30.0	mg/L	300.0	97	80-120	QCS	
	NITRATE-N	2.42	2.50	mg/L	300.0	97	80-120		
OPHOS-090424	ORTHO-PHOSPHATE	0.45	0.49	mg/L	SM4500-P F	92	70-130	QCS	
TURB_090424	TURBIDITY	0.95	1.00	NTU	180.1	95	70-130	QCS	

*Notation:

% Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

Page 1 of 2

QUALITY CONTROL REPORT

Reference Number: 09-05772

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Report Date: 5/8/2009

Duplicate

-				Duplicate				QC	
Batch	Sample	Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
200.7-090427A									
	11461	HARDNESS	142	143	mg CaCO3/L	0.7	0-45	DUI	2
	11780	HARDNESS	155	155	mg CaCO3/L	0.0	0-45	DUI	
COD_090507									
	12748	CHEMICAL OXYGEN DEMAND	3600	3500	mg/L	2.8	0-45	DUI	2
D090429A									
EC_090424									
_	11460	ELECTRICAL CONDUCTIVITY	363	362	uS/cm	0.3	0-45	DUI	5
	11561	ELECTRICAL CONDUCTIVITY	779	780	uS/cm	0.1	0-45	DUI	5
	11627	ELECTRICAL CONDUCTIVITY	386	401	uS/cm	3.8	0-45	DUI	2
	11903	ELECTRICAL CONDUCTIVITY	275	272	uS/cm	1.1	0-45	DUI	2
	11942	ELECTRICAL CONDUCTIVITY	367	362	uS/cm	1.4	0-45	DUI	2
1090424A									
	11797	CHLORIDE	0.6	0.6	mg/L	0.0	0-45	DUI	2
	11864	CHLORIDE	18	18	mg/L	0.0	0-45	DUI	2
	11934	CHLORIDE	15	15	mg/L	0.0	0-45	DUI	2
	11942	CHLORIDE	7.4	7.4	mg/L	0.0	0-45	DUI	
OPHOS-090424	Ļ								
	11910	ORTHO-PHOSPHATE	0.16	0.16	mg/L	0.0	0-50	DUI	2
PH_090424									
	11911	HYDROGEN ION (pH)	6.05	6.03	pH Units	0.3	0-45	DUI	2
TDS_090428									
TURB_090424									
—	11911	TURBIDITY	284	280	NTU	1.4	0-50	DUI	5
	11934	TURBIDITY	0.68	0.71	NTU	4.3	0-50	DUI	2

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Matrix Sp	latrix Spike					Duplicate								
				Spike	Spike	Spike		Percent	Recovery				QC	
Batch	Sample	Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments
200.7-090427A														
	11461	HARDNESS	142	210	211	69.5	mg CaCO3/L	98	99	80-120	1.5	0-60	LFN	Λ
	11780	HARDNESS	155	225	223	69.5	mg CaCO3/L	101	98	80-120	2.9	0-60	LFN	Λ
COD_090507														
	11907	CHEMICAL OXYGEN DEMAND	ND	45	48	50	mg/L	90	96	80-120	6.5	0-60	LFN	Λ
	12313	CHEMICAL OXYGEN DEMAND	ND	49	49	50	mg/L	98	98	80-120	0.0	0-60	LFN	Λ
	12748	CHEMICAL OXYGEN DEMAND	3600	5900	5900	2500	mg/L	92	92	80-120	0.0	0-60	LFN	Λ
D090429A														
	11629	BROMATE	ND	0.0087		0.010	mg/L	87	NA	75-125	NA	0-60	LFN	Λ
	11909	BROMATE	ND	0.0107		0.010	mg/L	107	NA	75-125	NA	0-60	LFN	Λ
1090424A														
	11797	CHLORIDE	0.6	20.1		20.00	mg/L	98	NA	80-120	NA	0-60	LFN	Λ
	11864	NITRATE-N	ND	1.08		1.00	mg/L	108	NA	80-120	NA	0-60	LFN	Λ
	11934	NITRATE-N	ND	1.05		1.00	mg/L	105	NA	80-120	NA	0-60	LFN	Λ
	11942	NITRATE-N	ND	18.8		20.00	mg/L	94	NA	80-120	NA	0-60	LFN	Λ
	11942	CHLORIDE	7.4	26.3		20.00	mg/L	95	NA	80-120	NA	0-60	LFN	Λ
OPHOS-090424	4													
	11910	ORTHO-PHOSPHATE	0.16	1.17	1.19	1.00	mg/L	101	103	70-130	2.0	0-50	LFN	Λ

%RPD = Relative Percent Difference

NA = Indicates %RPD could not be calculated

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) analyses are used to determine the accuracy (MS) and precision (MSD) of a analytical method in a given sample matrix. Therefore, the usefulness of this report is limited to samples of similar matrices analyzed in the same analytical batch.

Chain of Custody / Analysis Request (Please complete all applicable shaded sections)

Report to:	Walla Walla Basin Watershed Cour	Bill to:	Walla Walla Basin Watershed Counc	For Lab Use Only
Ship Address:	810 S Main Street	Address:	810 South Main Street	Ref#
City:	Milton-Freewast: OR zip: 97862	City:	Milton-Freewa st: OR Zip: 97862	Check Regulatory Program
Attn:	Troy Baker	Phone:	FAX:	Safe Drinking Water Act
Phone:	541.938-2170 FAX:	P.O.#:	Attn:	Clean Water Act
Email:	Troy. Buller & WWBWE. org	🗌 Visa	M/C A/E Expires /	
Project	Hall-Wentland Recharge Sites	Card#:		Other

Inc	structions										Analy	1900 11	equested					
1. 2. 3. 4. 5.	 Use one line per sample Location. Be specific in analysis requests. (NEW) List each metal individually (NEW) Check off analyses to be performed for each sample Loaction. Enter number of containers. 			Turn Around Time Required Standard Half-time (50% surcharge) Quickest (100% surcharge) Phone Call Req. Emergency (Phone Call Req.)						less	COD	CI, os,pH,Turb,Ec			er of Containers	CO007	⁷ 616	
	Field ID	Loca	tion		Grab/ Comp.	Sample Matrix*	Date	Time	Brom	Hardr	NO3,	TDS, 0-Ph			Numb	Special Ins Conditions	tructions on Rece	a aipt
1	MAL	MUORREEP.	1				4/23	8:35	X			X			4			
2	MEZ	Mud ever	-2-				4/23	8:40	$\overline{\mathbf{X}}$		\square				4			
3	SWL	Source wa	iter l				4/23	8:50				X			9			
4	12	Locher Rt	5 proc				1/23	8:55	\square			X			9			
5	L	Locher R	lond l				4/23	9:26	X			\square			4			
6	HW3	Hall Wen	+land 2	3			U/23	9:55	\square						4	2		
7	HWI	Hall Wen	Hand	1			4/23	10:05	X		X	X			4	Dromati In ca	sler	Of A
8	HINZ	Hall Wen	Fland	2			4/23	10:25	K	be		K			4			
9	HWSWI	Hall Wint	-land J	whier			4/23	10:30				X			4			
10										1	10	067	770			Tetel Oriela		
San	npled by:		Phone:				FAX:			<u> </u>	J3-	v_{2}				Total Contain	ers	
Sa	ample Receipt Requ	uest (Must inclu	de FAX o	or Emai	l)	*	W - wa DW - d	ter drinking w	ater	SW - su GW - Gi	round wat	ter S	- soil Oth	- oil ier		Yes	No	N/A
Re	linquished by		Date	Time	R	eceived by	4				Date	Time	Custody seals intac	t				\square
/	Tom Ba	ken !	4/23/09	11:4	5	0	VC	N		4/24	109 X	0835	Sample temp	C satisf	acto	bry		
						K	(-					Samples received i	ntact		\square		
													Chain of custody &	labels a	gree	e Z		
FOR	RM: COC 01-06-2009											Ø9	-05772			17.1		

Analyses Requested

7616

of

CAL

Page

NALY

LABORATORIES 1620 S. Walnut St. Burlington, WA 98233 <u>1.800.755.9295</u> 805 W. Orchard Dr. Suite 4 Bellingham, WA 98225